亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

WildUAV: Monocular UAV Dataset for Depth Estimation Tasks

计算机科学 人工智能 单眼 基本事实 RGB颜色模型 计算机视觉 深度学习 摄影测量学 避障 深度图 图像(数学) 机器人 移动机器人
作者
Horatiu Florea,Vlad–Cristian Miclea,Sergiu Nedevschi
标识
DOI:10.1109/iccp53602.2021.9733671
摘要

Acquiring scene depth information remains a crucial step in most autonomous navigation applications, enabling advanced features such as obstacle avoidance and SLAM. In many situations, extracting this data from camera feeds is preferred to the alternative, active depth sensing hardware such as LiDARs. Like in many other fields, Deep Learning solutions for processing images and generating depth predictions have seen major improvements in recent years. In order to support further research of such techniques, we present a new dataset, WildUAV, consisting of high-resolution RGB imagery for which dense depth ground truth data has been generated based on 3D maps obtained through photogrammetry. Camera positioning information is also included, along with additional video sequences useful in self-supervised learning scenarios where ground truth data is not required. Unlike traditional, automotive datasets typically used for depth prediction tasks, ours is designed to support on-board applications for Unmanned Aerial Vehicles in unstructured, natural environments, which prove to be more challenging. We perform several experiments using supervised and self-supervised monocular depth estimation methods and discuss the results. Data links and additional details will be provided on the project's Github repository.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马哥完成签到,获得积分10
刚刚
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
17秒前
香蕉觅云应助doublenine18采纳,获得10
1分钟前
科研通AI6应助曦耀采纳,获得10
1分钟前
zxcvvbb1001完成签到 ,获得积分10
1分钟前
1分钟前
doublenine18发布了新的文献求助10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI6应助曦耀采纳,获得10
2分钟前
wls完成签到 ,获得积分10
2分钟前
2分钟前
shengbo完成签到 ,获得积分10
2分钟前
Akaza完成签到 ,获得积分10
2分钟前
2分钟前
ZYP发布了新的文献求助10
3分钟前
3分钟前
阿洁发布了新的文献求助30
3分钟前
搜集达人应助wangyuanyuan采纳,获得10
3分钟前
李健应助阿洁采纳,获得30
3分钟前
3分钟前
3分钟前
wangyuanyuan发布了新的文献求助10
3分钟前
ffff完成签到 ,获得积分10
3分钟前
汉堡包应助文章多多采纳,获得10
3分钟前
3分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639719
求助须知:如何正确求助?哪些是违规求助? 4750040
关于积分的说明 15007251
捐赠科研通 4797884
什么是DOI,文献DOI怎么找? 2564024
邀请新用户注册赠送积分活动 1522880
关于科研通互助平台的介绍 1482534