凝聚
细胞器
化学
清除
酶
细胞内
生物物理学
生物化学
抗氧化剂
生物
作者
Yufeng Chen,Min Yuan,Yanwen Zhang,Shaohong Zhou,Kemin Wang,Zhenjun Wu,Jianbo Liu
摘要
Artificial organelles are microcompartments capable of performing catalytic reactions in living cells to replace absent or lost cellular functions. Coacervate microdroplets, formed via liquid-liquid phase separation, have been developed as membraneless organelles that mimic the dynamical organization of liquid organelles. However, the further studies focusing on cellular implanting of coacervate microdroplets in living cells to supplement the dysfunction of natural cells are still rare. Here catalase (CAT)-containing coacervate microdroplets, developed as artificial membraneless organelles with unique liquid compartments, were integrated into living cells to scavenge intracellular massive reactive oxygen species (ROS) and recover cell viability. The enzyme-containing coacervate microdroplets were constructed by sequestering CAT in poly(dimethyldiallylammonium chloride) (PDDA)/polyacrylic acid (PAA) coacervate microdroplets; their liquid-like fluidity was revealed by fluorescence recovery after bleaching, and coalescence experiment in vitro and in living cells. After cellular internalization, the coacervate microdroplets remained in the polymer-rich dense phase and retained enzymatic activities. CAT-mediated H2O2 removal and ROS scavenging in living cells decreased the cytotoxicity of H2O2, improving cell viability. The cell internalization of coacervate microdroplets in vitro provides a novel approach for designing artificial membraneless organelles in living cells. The strategy of using artificial organelle-mediated enzymatic reactions to supplement cellular dysfunctions can be exploited for their further biomedical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI