亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Random Dynamic Analysis of Wind-Vehicle-Bridge System Based on ARMAX Surrogate Model and High-Order Differencing

侧风 风速 偏斜 控制理论(社会学) 蒙特卡罗方法 火车 自回归模型 加速度 计算机科学 工程类 模拟 数学 统计 气象学 物理 人工智能 航空航天工程 经典力学 地图学 地理 控制(管理)
作者
Xu Han,Huoyue Xiang,Xuli Chen,Jin Zhu,Yongle Li
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:23 (02) 被引量:4
标识
DOI:10.1142/s0219455423500219
摘要

To investigate the stochastic characteristics of vehicle-bridge (VB) system under crosswind, an efficient method which combines AutoRegressive Moving Average with eXogenous inputs (ARMAX) model, high-order differencing (HOD) and important sample was proposed in this paper. First, the wind turbulence spectra relative to a moving vehicle and equivalent static gust load method were adopted to simplify the turbulent wind field of VB system, and a wind-vehicle-bridge (WVB) model was established and verified. Then, an analysis framework for WVB system based on ARMAX model was proposed, and HOD method and important sample were used to improve the prediction performance of the surrogate model. Prediction accuracy and calculation efficiency of proposed AMRAX model were verified and compared by Monte Carlo simulation (MCS). Finally, the impacts of vehicle speed and wind velocity on the stochastic characteristics of train response were discussed. Results indicate that the HOD method has significantly improved the prediction performance of ARMAX model for lateral response of trains, and the train responses predicted by ARMAX model based on HOD and important sample show perfect agreement with target results. Compared with MCS, the calculation efficiencies of proposed ARMAX model are improved by about two orders of magnitude. The extreme values of the train response with different vehicle speed and wind velocity gradually obey right skewness distribution, especially the lateral acceleration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助路漫漫采纳,获得10
19秒前
22秒前
熊仔一百完成签到 ,获得积分10
24秒前
HLT完成签到 ,获得积分10
44秒前
zzuzll完成签到,获得积分10
58秒前
DoggyBadiou发布了新的文献求助10
1分钟前
2分钟前
完美世界应助DoggyBadiou采纳,获得10
2分钟前
芊瑶发布了新的文献求助10
2分钟前
共享精神应助菩提本无树采纳,获得10
3分钟前
3分钟前
jyy发布了新的文献求助200
3分钟前
赘婿应助怕黑凝天采纳,获得30
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
怕黑凝天发布了新的文献求助30
3分钟前
3分钟前
3分钟前
情怀应助bukeshuo采纳,获得10
4分钟前
4分钟前
4分钟前
xiaorui发布了新的文献求助10
5分钟前
JamesPei应助xiaorui采纳,获得10
5分钟前
5分钟前
陈媛发布了新的文献求助10
5分钟前
5分钟前
毓香谷的春天完成签到 ,获得积分10
6分钟前
贪玩的一曲完成签到,获得积分10
6分钟前
6分钟前
FashionBoy应助我爱科研采纳,获得10
6分钟前
6分钟前
ZHEN发布了新的文献求助10
6分钟前
6分钟前
传奇3应助ZHEN采纳,获得10
7分钟前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
Project Studies: A Late Modern University Reform? 300
2024 Medicinal Chemistry Reviews 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167178
求助须知:如何正确求助?哪些是违规求助? 2818660
关于积分的说明 7921848
捐赠科研通 2478428
什么是DOI,文献DOI怎么找? 1320299
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438