Random Dynamic Analysis of Wind-Vehicle-Bridge System Based on ARMAX Surrogate Model and High-Order Differencing

侧风 风速 偏斜 控制理论(社会学) 蒙特卡罗方法 火车 自回归模型 加速度 计算机科学 工程类 模拟 数学 统计 气象学 物理 控制(管理) 地图学 经典力学 人工智能 地理 航空航天工程
作者
Xu Han,Huoyue Xiang,Xuli Chen,Jin Zhu,Yongle Li
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:23 (02) 被引量:4
标识
DOI:10.1142/s0219455423500219
摘要

To investigate the stochastic characteristics of vehicle-bridge (VB) system under crosswind, an efficient method which combines AutoRegressive Moving Average with eXogenous inputs (ARMAX) model, high-order differencing (HOD) and important sample was proposed in this paper. First, the wind turbulence spectra relative to a moving vehicle and equivalent static gust load method were adopted to simplify the turbulent wind field of VB system, and a wind-vehicle-bridge (WVB) model was established and verified. Then, an analysis framework for WVB system based on ARMAX model was proposed, and HOD method and important sample were used to improve the prediction performance of the surrogate model. Prediction accuracy and calculation efficiency of proposed AMRAX model were verified and compared by Monte Carlo simulation (MCS). Finally, the impacts of vehicle speed and wind velocity on the stochastic characteristics of train response were discussed. Results indicate that the HOD method has significantly improved the prediction performance of ARMAX model for lateral response of trains, and the train responses predicted by ARMAX model based on HOD and important sample show perfect agreement with target results. Compared with MCS, the calculation efficiencies of proposed ARMAX model are improved by about two orders of magnitude. The extreme values of the train response with different vehicle speed and wind velocity gradually obey right skewness distribution, especially the lateral acceleration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韦威风发布了新的文献求助10
刚刚
刚刚
king完成签到,获得积分10
刚刚
qweerrtt发布了新的文献求助10
1秒前
余三浪完成签到,获得积分10
1秒前
2秒前
lixoii发布了新的文献求助20
2秒前
豌豆射手发布了新的文献求助10
3秒前
科研通AI2S应助k7采纳,获得10
3秒前
wszldmn完成签到,获得积分10
3秒前
坚定的亦绿完成签到,获得积分10
4秒前
4秒前
yurh完成签到,获得积分10
4秒前
小朋友完成签到,获得积分10
5秒前
华仔应助小王采纳,获得10
5秒前
彭于晏应助乔乔采纳,获得10
5秒前
5秒前
1199完成签到,获得积分10
5秒前
5秒前
南瓜完成签到 ,获得积分10
6秒前
eric曾完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
韦威风完成签到,获得积分10
9秒前
请叫我风吹麦浪应助cc采纳,获得30
9秒前
所所应助Ll采纳,获得10
9秒前
阳光的道消完成签到,获得积分10
10秒前
10秒前
10秒前
豌豆射手完成签到,获得积分10
11秒前
11秒前
桑桑发布了新的文献求助10
11秒前
领导范儿应助幸福胡萝卜采纳,获得10
12秒前
明理的小甜瓜完成签到,获得积分10
13秒前
13秒前
33333完成签到,获得积分20
13秒前
13秒前
13秒前
756发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762