Combining Electro-Fenton and adsorption processes for reclamation of textile industry wastewater and modeling by Artificial neural Networks

吸附 废水 海泡石 化学 制浆造纸工业 体积流量 化学工程 环境科学 环境化学 环境工程 有机化学 工程类 原材料 物理 量子力学
作者
Ayşe Kuleyin,Ayşem Gök,Handan Atalay,Feryal Akbal,Amane Jada,Joëlle Duplay
出处
期刊:Journal of Electroanalytical Chemistry [Elsevier BV]
卷期号:921: 116652-116652 被引量:13
标识
DOI:10.1016/j.jelechem.2022.116652
摘要

In the present study, coupling electro-Fenton (EF) and adsorption processes for textile industry wastewater remediation was investigated, in both batch and continuous flow modes. Sepiolite was used as an adsorbent in the coupled EF/adsorption processes. Various parameters such as reaction time, current intensity, Fe2+ concentration, sepiolite dose, and flow rate were found to affect the efficiency of the coupled processes. In comparison to the single EF process, a synergistic effect occurred in the coupled EF/adsorption processes, leading to better performance for COD and TOC removal from textile wastewater. Thus, in the single EF technology, using graphite felt electrodes, COD and TOC removal efficiencies from real textile wastewater, were 58 % and 36 %, respectively. However, in the coupled EF/adsorption processes, COD and TOC removal efficiencies increased to 85 % and to 63 %, respectively. The higher COD and TOC removals may be attributed to the combined effect of adsorption and oxidation reactions in coupled EF/adsorption process. Moreover, Artificial Neural Networks (ANN) model was built up in order to estimate COD and TOC removal efficiencies of the coupled EF/adsorption processes. A good correlation was found between the ANN model theoretical prediction, and the experimental data, for COD and TOC removals, in both batch and continuous modes. The novelty of the current work lies in the synergistic effect occurring between the EF and adsorption processes in wastewater treatment and provides the ANN model as a valuable tool for describing COD and TOC removal efficiencies under different experimental conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gabee完成签到 ,获得积分10
刚刚
张哈完成签到 ,获得积分10
4秒前
kk应助sddq采纳,获得10
4秒前
123完成签到,获得积分10
4秒前
缥缈若翠完成签到,获得积分10
5秒前
7秒前
绿野仙踪完成签到,获得积分10
8秒前
木木完成签到,获得积分10
8秒前
Feng5945完成签到 ,获得积分10
8秒前
阿波罗完成签到 ,获得积分10
9秒前
包飞雪发布了新的文献求助10
10秒前
Mm完成签到,获得积分10
11秒前
夏虫完成签到,获得积分10
11秒前
勤奋尔丝完成签到 ,获得积分10
12秒前
czz014完成签到,获得积分10
15秒前
dream完成签到 ,获得积分10
20秒前
包飞雪完成签到,获得积分10
22秒前
chenjun7080完成签到,获得积分10
23秒前
十二应助科研通管家采纳,获得10
24秒前
天天快乐应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
怡然猎豹完成签到,获得积分10
32秒前
牛奶拌可乐完成签到 ,获得积分10
32秒前
欢喜的早晨完成签到,获得积分10
41秒前
禾页完成签到 ,获得积分10
44秒前
yyy关闭了yyy文献求助
49秒前
mendicant完成签到,获得积分10
51秒前
帅哥吴克完成签到,获得积分10
52秒前
耍酷依玉完成签到,获得积分10
53秒前
Wilbert完成签到 ,获得积分10
54秒前
55秒前
邪恶青年完成签到,获得积分10
57秒前
田田完成签到 ,获得积分10
59秒前
awedfa发布了新的文献求助10
1分钟前
你好我有一个帽衫完成签到,获得积分10
1分钟前
小石头完成签到,获得积分10
1分钟前
孤独剑完成签到 ,获得积分10
1分钟前
曾泓跃完成签到 ,获得积分10
1分钟前
whh完成签到,获得积分10
1分钟前
苯二氮卓完成签到,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965780
求助须知:如何正确求助?哪些是违规求助? 3511022
关于积分的说明 11156025
捐赠科研通 3245496
什么是DOI,文献DOI怎么找? 1793089
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804255