Combining Electro-Fenton and adsorption processes for reclamation of textile industry wastewater and modeling by Artificial neural Networks

吸附 废水 海泡石 化学 制浆造纸工业 体积流量 化学工程 环境科学 环境化学 环境工程 有机化学 工程类 量子力学 物理 原材料
作者
Ayşe Kuleyin,Ayşem Gök,Handan Atalay,Feryal Akbal,Amane Jada,Joëlle Duplay
出处
期刊:Journal of Electroanalytical Chemistry [Elsevier]
卷期号:921: 116652-116652 被引量:13
标识
DOI:10.1016/j.jelechem.2022.116652
摘要

In the present study, coupling electro-Fenton (EF) and adsorption processes for textile industry wastewater remediation was investigated, in both batch and continuous flow modes. Sepiolite was used as an adsorbent in the coupled EF/adsorption processes. Various parameters such as reaction time, current intensity, Fe2+ concentration, sepiolite dose, and flow rate were found to affect the efficiency of the coupled processes. In comparison to the single EF process, a synergistic effect occurred in the coupled EF/adsorption processes, leading to better performance for COD and TOC removal from textile wastewater. Thus, in the single EF technology, using graphite felt electrodes, COD and TOC removal efficiencies from real textile wastewater, were 58 % and 36 %, respectively. However, in the coupled EF/adsorption processes, COD and TOC removal efficiencies increased to 85 % and to 63 %, respectively. The higher COD and TOC removals may be attributed to the combined effect of adsorption and oxidation reactions in coupled EF/adsorption process. Moreover, Artificial Neural Networks (ANN) model was built up in order to estimate COD and TOC removal efficiencies of the coupled EF/adsorption processes. A good correlation was found between the ANN model theoretical prediction, and the experimental data, for COD and TOC removals, in both batch and continuous modes. The novelty of the current work lies in the synergistic effect occurring between the EF and adsorption processes in wastewater treatment and provides the ANN model as a valuable tool for describing COD and TOC removal efficiencies under different experimental conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
高大的储发布了新的文献求助10
1秒前
1秒前
1秒前
科研通AI6.1应助苗条安莲采纳,获得10
1秒前
今后应助我是聪聪呦采纳,获得10
1秒前
替我活着发布了新的文献求助10
1秒前
。。。完成签到,获得积分20
1秒前
科研通AI6.1应助123采纳,获得10
2秒前
2秒前
钟梓袄发布了新的文献求助30
2秒前
3秒前
12333完成签到,获得积分10
3秒前
ljy发布了新的文献求助10
3秒前
3秒前
4秒前
QHJ发布了新的文献求助10
4秒前
q1356478314发布了新的文献求助10
4秒前
4秒前
yiqingLin完成签到,获得积分10
4秒前
yyy发布了新的文献求助10
4秒前
Luxuehua完成签到,获得积分10
4秒前
一一应助tony采纳,获得10
5秒前
csy完成签到,获得积分10
5秒前
5秒前
慕白hat发布了新的文献求助10
6秒前
xinyiai发布了新的文献求助10
6秒前
科研的苦完成签到,获得积分20
6秒前
量子星尘发布了新的文献求助10
6秒前
洋洋发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
DZ完成签到,获得积分10
7秒前
WFX0510完成签到,获得积分20
8秒前
深情安青应助常常在努力采纳,获得10
8秒前
Luxuehua发布了新的文献求助10
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776133
求助须知:如何正确求助?哪些是违规求助? 5627943
关于积分的说明 15441360
捐赠科研通 4908366
什么是DOI,文献DOI怎么找? 2641183
邀请新用户注册赠送积分活动 1589057
关于科研通互助平台的介绍 1543812