Combining Electro-Fenton and adsorption processes for reclamation of textile industry wastewater and modeling by Artificial neural Networks

吸附 废水 海泡石 化学 制浆造纸工业 体积流量 化学工程 环境科学 环境化学 环境工程 有机化学 工程类 量子力学 物理 原材料
作者
Ayşe Kuleyin,Ayşem Gök,Handan Atalay,Feryal Akbal,Amane Jada,Joëlle Duplay
出处
期刊:Journal of Electroanalytical Chemistry [Elsevier BV]
卷期号:921: 116652-116652 被引量:13
标识
DOI:10.1016/j.jelechem.2022.116652
摘要

In the present study, coupling electro-Fenton (EF) and adsorption processes for textile industry wastewater remediation was investigated, in both batch and continuous flow modes. Sepiolite was used as an adsorbent in the coupled EF/adsorption processes. Various parameters such as reaction time, current intensity, Fe2+ concentration, sepiolite dose, and flow rate were found to affect the efficiency of the coupled processes. In comparison to the single EF process, a synergistic effect occurred in the coupled EF/adsorption processes, leading to better performance for COD and TOC removal from textile wastewater. Thus, in the single EF technology, using graphite felt electrodes, COD and TOC removal efficiencies from real textile wastewater, were 58 % and 36 %, respectively. However, in the coupled EF/adsorption processes, COD and TOC removal efficiencies increased to 85 % and to 63 %, respectively. The higher COD and TOC removals may be attributed to the combined effect of adsorption and oxidation reactions in coupled EF/adsorption process. Moreover, Artificial Neural Networks (ANN) model was built up in order to estimate COD and TOC removal efficiencies of the coupled EF/adsorption processes. A good correlation was found between the ANN model theoretical prediction, and the experimental data, for COD and TOC removals, in both batch and continuous modes. The novelty of the current work lies in the synergistic effect occurring between the EF and adsorption processes in wastewater treatment and provides the ANN model as a valuable tool for describing COD and TOC removal efficiencies under different experimental conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
seven发布了新的文献求助10
1秒前
搜集达人应助777采纳,获得10
2秒前
Shiyz发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助30
3秒前
微笑以南完成签到,获得积分10
3秒前
3秒前
糊涂的飞荷完成签到,获得积分10
4秒前
lili发布了新的文献求助10
4秒前
5秒前
飘逸鸽子完成签到,获得积分10
5秒前
bo完成签到,获得积分10
5秒前
Ava应助Ting222采纳,获得30
5秒前
上官若男应助yy采纳,获得30
6秒前
6秒前
英姑应助慧hui采纳,获得30
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
大模型应助清风明月采纳,获得10
7秒前
王毅完成签到,获得积分10
7秒前
7秒前
8秒前
seven完成签到,获得积分10
8秒前
ding应助hahakeyan采纳,获得10
9秒前
9秒前
开心夜云发布了新的文献求助10
9秒前
9秒前
星辰大海应助无奈的语风采纳,获得10
9秒前
登登发布了新的文献求助10
9秒前
Ting222发布了新的文献求助30
10秒前
可爱的函函应助水镜采纳,获得10
10秒前
阿毛发布了新的文献求助10
11秒前
xgs发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4988890
求助须知:如何正确求助?哪些是违规求助? 4238321
关于积分的说明 13202223
捐赠科研通 4032221
什么是DOI,文献DOI怎么找? 2206012
邀请新用户注册赠送积分活动 1217341
关于科研通互助平台的介绍 1135527