Combining Electro-Fenton and adsorption processes for reclamation of textile industry wastewater and modeling by Artificial neural Networks

吸附 废水 海泡石 化学 制浆造纸工业 体积流量 化学工程 环境科学 环境化学 环境工程 有机化学 工程类 量子力学 物理 原材料
作者
Ayşe Kuleyin,Ayşem Gök,Handan Atalay,Feryal Akbal,Amane Jada,Joëlle Duplay
出处
期刊:Journal of Electroanalytical Chemistry [Elsevier]
卷期号:921: 116652-116652 被引量:13
标识
DOI:10.1016/j.jelechem.2022.116652
摘要

In the present study, coupling electro-Fenton (EF) and adsorption processes for textile industry wastewater remediation was investigated, in both batch and continuous flow modes. Sepiolite was used as an adsorbent in the coupled EF/adsorption processes. Various parameters such as reaction time, current intensity, Fe2+ concentration, sepiolite dose, and flow rate were found to affect the efficiency of the coupled processes. In comparison to the single EF process, a synergistic effect occurred in the coupled EF/adsorption processes, leading to better performance for COD and TOC removal from textile wastewater. Thus, in the single EF technology, using graphite felt electrodes, COD and TOC removal efficiencies from real textile wastewater, were 58 % and 36 %, respectively. However, in the coupled EF/adsorption processes, COD and TOC removal efficiencies increased to 85 % and to 63 %, respectively. The higher COD and TOC removals may be attributed to the combined effect of adsorption and oxidation reactions in coupled EF/adsorption process. Moreover, Artificial Neural Networks (ANN) model was built up in order to estimate COD and TOC removal efficiencies of the coupled EF/adsorption processes. A good correlation was found between the ANN model theoretical prediction, and the experimental data, for COD and TOC removals, in both batch and continuous modes. The novelty of the current work lies in the synergistic effect occurring between the EF and adsorption processes in wastewater treatment and provides the ANN model as a valuable tool for describing COD and TOC removal efficiencies under different experimental conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
scarlett发布了新的文献求助10
刚刚
haha发布了新的文献求助10
1秒前
1秒前
Li应助Maximuszhao采纳,获得10
1秒前
z荩发布了新的文献求助10
1秒前
2秒前
2秒前
科研通AI6应助能干妙竹采纳,获得30
2秒前
Jodie0610发布了新的文献求助10
2秒前
CGGBZLX发布了新的文献求助10
3秒前
yangzhuang发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
鳄鱼天使完成签到,获得积分10
5秒前
Ava应助山下梅子酒采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
7秒前
czy完成签到,获得积分10
8秒前
朴素山兰发布了新的文献求助10
8秒前
8秒前
明媚发布了新的文献求助10
8秒前
桐桐应助高中生采纳,获得10
8秒前
9秒前
deep发布了新的文献求助10
10秒前
10秒前
scarlett完成签到,获得积分10
10秒前
英吉利25发布了新的文献求助10
10秒前
old幽露露完成签到 ,获得积分10
11秒前
江雯君完成签到,获得积分10
11秒前
Cecilia发布了新的文献求助10
11秒前
溪川流完成签到,获得积分10
12秒前
jason完成签到,获得积分0
12秒前
怕孤独的广缘完成签到 ,获得积分10
12秒前
香蕉觅云应助大反应釜采纳,获得10
12秒前
月夜孤影完成签到,获得积分10
13秒前
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341864
求助须知:如何正确求助?哪些是违规求助? 4477955
关于积分的说明 13937502
捐赠科研通 4374208
什么是DOI,文献DOI怎么找? 2403393
邀请新用户注册赠送积分活动 1396165
关于科研通互助平台的介绍 1368165