亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combining Electro-Fenton and adsorption processes for reclamation of textile industry wastewater and modeling by Artificial neural Networks

吸附 废水 海泡石 化学 制浆造纸工业 体积流量 化学工程 环境科学 环境化学 环境工程 有机化学 工程类 量子力学 物理 原材料
作者
Ayşe Kuleyin,Ayşem Gök,Handan Atalay,Feryal Akbal,Amane Jada,Joëlle Duplay
出处
期刊:Journal of Electroanalytical Chemistry [Elsevier]
卷期号:921: 116652-116652 被引量:13
标识
DOI:10.1016/j.jelechem.2022.116652
摘要

In the present study, coupling electro-Fenton (EF) and adsorption processes for textile industry wastewater remediation was investigated, in both batch and continuous flow modes. Sepiolite was used as an adsorbent in the coupled EF/adsorption processes. Various parameters such as reaction time, current intensity, Fe2+ concentration, sepiolite dose, and flow rate were found to affect the efficiency of the coupled processes. In comparison to the single EF process, a synergistic effect occurred in the coupled EF/adsorption processes, leading to better performance for COD and TOC removal from textile wastewater. Thus, in the single EF technology, using graphite felt electrodes, COD and TOC removal efficiencies from real textile wastewater, were 58 % and 36 %, respectively. However, in the coupled EF/adsorption processes, COD and TOC removal efficiencies increased to 85 % and to 63 %, respectively. The higher COD and TOC removals may be attributed to the combined effect of adsorption and oxidation reactions in coupled EF/adsorption process. Moreover, Artificial Neural Networks (ANN) model was built up in order to estimate COD and TOC removal efficiencies of the coupled EF/adsorption processes. A good correlation was found between the ANN model theoretical prediction, and the experimental data, for COD and TOC removals, in both batch and continuous modes. The novelty of the current work lies in the synergistic effect occurring between the EF and adsorption processes in wastewater treatment and provides the ANN model as a valuable tool for describing COD and TOC removal efficiencies under different experimental conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助congfeng采纳,获得10
6秒前
suliuyin应助眯眯眼的山柳采纳,获得10
8秒前
852应助眯眯眼的山柳采纳,获得10
8秒前
FashionBoy应助thl采纳,获得10
35秒前
42秒前
英姑应助科研通管家采纳,获得10
45秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
量子星尘发布了新的文献求助10
47秒前
科研通AI2S应助另一种蓝色采纳,获得10
51秒前
53秒前
thl发布了新的文献求助10
57秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
CRUSADER完成签到,获得积分10
1分钟前
1分钟前
attention完成签到,获得积分10
1分钟前
cat发布了新的文献求助30
1分钟前
1分钟前
congfeng发布了新的文献求助10
1分钟前
congfeng完成签到,获得积分20
2分钟前
2分钟前
李健的小迷弟应助thl采纳,获得10
2分钟前
KUIWU完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Ih6uaZ完成签到 ,获得积分10
2分钟前
kki发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
kki完成签到,获得积分10
3分钟前
3分钟前
Marshall发布了新的文献求助10
3分钟前
thl发布了新的文献求助10
3分钟前
3分钟前
3分钟前
cijing完成签到,获得积分10
4分钟前
林子鸿完成签到 ,获得积分10
4分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746947
求助须知:如何正确求助?哪些是违规求助? 5440669
关于积分的说明 15356055
捐赠科研通 4886962
什么是DOI,文献DOI怎么找? 2627493
邀请新用户注册赠送积分活动 1575951
关于科研通互助平台的介绍 1532742