Combining Electro-Fenton and adsorption processes for reclamation of textile industry wastewater and modeling by Artificial neural Networks

吸附 废水 海泡石 化学 制浆造纸工业 体积流量 化学工程 环境科学 环境化学 环境工程 有机化学 工程类 量子力学 物理 原材料
作者
Ayşe Kuleyin,Ayşem Gök,Handan Atalay,Feryal Akbal,Amane Jada,Joëlle Duplay
出处
期刊:Journal of Electroanalytical Chemistry [Elsevier]
卷期号:921: 116652-116652 被引量:13
标识
DOI:10.1016/j.jelechem.2022.116652
摘要

In the present study, coupling electro-Fenton (EF) and adsorption processes for textile industry wastewater remediation was investigated, in both batch and continuous flow modes. Sepiolite was used as an adsorbent in the coupled EF/adsorption processes. Various parameters such as reaction time, current intensity, Fe2+ concentration, sepiolite dose, and flow rate were found to affect the efficiency of the coupled processes. In comparison to the single EF process, a synergistic effect occurred in the coupled EF/adsorption processes, leading to better performance for COD and TOC removal from textile wastewater. Thus, in the single EF technology, using graphite felt electrodes, COD and TOC removal efficiencies from real textile wastewater, were 58 % and 36 %, respectively. However, in the coupled EF/adsorption processes, COD and TOC removal efficiencies increased to 85 % and to 63 %, respectively. The higher COD and TOC removals may be attributed to the combined effect of adsorption and oxidation reactions in coupled EF/adsorption process. Moreover, Artificial Neural Networks (ANN) model was built up in order to estimate COD and TOC removal efficiencies of the coupled EF/adsorption processes. A good correlation was found between the ANN model theoretical prediction, and the experimental data, for COD and TOC removals, in both batch and continuous modes. The novelty of the current work lies in the synergistic effect occurring between the EF and adsorption processes in wastewater treatment and provides the ANN model as a valuable tool for describing COD and TOC removal efficiencies under different experimental conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助温柔柜子采纳,获得10
2秒前
Criminology34应助oleskarabach采纳,获得10
2秒前
Starwalker应助科研同人采纳,获得30
2秒前
量子星尘发布了新的文献求助10
4秒前
入变发布了新的文献求助10
4秒前
6秒前
6秒前
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
ylkylk关注了科研通微信公众号
9秒前
9秒前
所所应助积极璎采纳,获得10
11秒前
HesperLxy完成签到,获得积分20
11秒前
12秒前
叽里咕噜发布了新的文献求助10
12秒前
Yuan完成签到,获得积分10
13秒前
sinlar发布了新的文献求助10
13秒前
QUPY发布了新的文献求助10
14秒前
14秒前
善学以致用应助健达采纳,获得10
14秒前
15秒前
HesperLxy发布了新的文献求助10
15秒前
15秒前
海丽完成签到,获得积分10
15秒前
科研通AI6.1应助高天雨采纳,获得10
16秒前
16秒前
NexusExplorer应助粗暴的大门采纳,获得10
16秒前
Akim应助二狗采纳,获得10
16秒前
刘立凡发布了新的文献求助10
17秒前
17秒前
祁梦完成签到 ,获得积分10
17秒前
18秒前
方东完成签到,获得积分10
19秒前
小二郎应助杏杏采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
洁净磬发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382