Combining Electro-Fenton and adsorption processes for reclamation of textile industry wastewater and modeling by Artificial neural Networks

吸附 废水 海泡石 化学 制浆造纸工业 体积流量 化学工程 环境科学 环境化学 环境工程 有机化学 工程类 量子力学 物理 原材料
作者
Ayşe Kuleyin,Ayşem Gök,Handan Atalay,Feryal Akbal,Amane Jada,Joëlle Duplay
出处
期刊:Journal of Electroanalytical Chemistry [Elsevier]
卷期号:921: 116652-116652 被引量:13
标识
DOI:10.1016/j.jelechem.2022.116652
摘要

In the present study, coupling electro-Fenton (EF) and adsorption processes for textile industry wastewater remediation was investigated, in both batch and continuous flow modes. Sepiolite was used as an adsorbent in the coupled EF/adsorption processes. Various parameters such as reaction time, current intensity, Fe2+ concentration, sepiolite dose, and flow rate were found to affect the efficiency of the coupled processes. In comparison to the single EF process, a synergistic effect occurred in the coupled EF/adsorption processes, leading to better performance for COD and TOC removal from textile wastewater. Thus, in the single EF technology, using graphite felt electrodes, COD and TOC removal efficiencies from real textile wastewater, were 58 % and 36 %, respectively. However, in the coupled EF/adsorption processes, COD and TOC removal efficiencies increased to 85 % and to 63 %, respectively. The higher COD and TOC removals may be attributed to the combined effect of adsorption and oxidation reactions in coupled EF/adsorption process. Moreover, Artificial Neural Networks (ANN) model was built up in order to estimate COD and TOC removal efficiencies of the coupled EF/adsorption processes. A good correlation was found between the ANN model theoretical prediction, and the experimental data, for COD and TOC removals, in both batch and continuous modes. The novelty of the current work lies in the synergistic effect occurring between the EF and adsorption processes in wastewater treatment and provides the ANN model as a valuable tool for describing COD and TOC removal efficiencies under different experimental conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助10
刚刚
1秒前
2秒前
爆米花应助默默采纳,获得10
2秒前
充电宝应助Peng采纳,获得10
3秒前
万能图书馆应助SC234采纳,获得10
3秒前
hongge007发布了新的文献求助10
3秒前
Luna_aaa应助盛夏如花采纳,获得10
3秒前
Owen应助喜欢猫采纳,获得10
4秒前
达尔文关注了科研通微信公众号
4秒前
4秒前
欣喜的绝山完成签到,获得积分10
4秒前
FashionBoy应助被窝哲学家采纳,获得10
4秒前
5秒前
yznfly应助Rico采纳,获得30
6秒前
WangYF2025完成签到 ,获得积分10
7秒前
7秒前
dd完成签到,获得积分20
8秒前
下次一定发布了新的文献求助10
8秒前
8秒前
小李发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
热情的远锋完成签到 ,获得积分10
12秒前
12秒前
13秒前
14秒前
Hello应助西瓜刀采纳,获得10
15秒前
达尔文发布了新的文献求助10
16秒前
YaoJason完成签到 ,获得积分10
17秒前
落后的彩虹完成签到 ,获得积分10
17秒前
18秒前
19秒前
佟韩发布了新的文献求助10
19秒前
gemini0615发布了新的文献求助10
19秒前
19秒前
19秒前
Dean应助Dong采纳,获得50
20秒前
隐形曼青应助TALE采纳,获得10
21秒前
zachary完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690