Polymer-Garnet-Based Composite Cathodes for Solid-State Li Batteries

材料科学 阴极 电解质 烧结 复合数 陶瓷 复合材料 聚合物 放电等离子烧结 离子电导率 化学工程 电极 化学 工程类 物理化学
作者
Martin Ihrig,Ruijie Ye,Alexander M. Laptev,Martin Finsterbusch,Dina Fattakhova‐Rohlfing,Olivier Guillon
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (2): 166-166
标识
DOI:10.1149/ma2022-012166mtgabs
摘要

All-solid-state lithium batteries (ASSLBs) can potentially outperform conventional Li-ion batteries with liquid or polymer electrolyte. One example for solid electrolytes is the garnet-type oxide Li 7 La 3 Zr 2 O 12 (LLZO). LLZO has a wide electrochemical window, stability vs. lithium, and good ionic conductivity at room temperature. The cathode in ASSLBs is manufactured from a cathode active material (CAM), such as LiCoO 2 (LCO). The efficiency of Li-ion storage can be improved by the use of a composite cathode consisting from a CAM and an ion-conducting ceramic, e.g. LCO/LLZO. In such a composite cathode, LLZO delivers Li-ions through the whole bulk enhancing the volumetric loading of LCO. In this work the addition of polymer electrolyte into LCO/LLZO composite cathode was proposed, aiming at further increase of cell performance due to facilitation of CAM usage, similar to the approach of manufacturing of polymer-ceramic electrolytes. They are fabricated mostly by tape casting of slurry with polymer matrix, ceramic filler and a solvent. An alternative technology includes free sintering of tape-casted LCO/LLZO porous network and subsequent infiltration by liquid or polymer electrolyte. Free sintering of LCO/LLZO composite requires relatively high temperature and/or long sintering time. This results in loss of volatile Li with decrease in electrochemical performance. In the present work the LCO/LLZO composite cathode was manufactured in a powder-based process by Field-Assisted Sintering Technique also known as Spark Plasma Sintering (FAST/SPS). Fast heating (100°C/min and higher) and application of mechanical pressure during FAST/SPS enable reduction of sintering temperature and processing time needed for fabrication of nearly-fully-dense composite.[1] Thereby, Li evaporation and grain growth can be significantly reduced. This technology was used in our previous work for fabrication of half-cells with dense LLZO electrolyte and dense LCO/LLZO composite cathode. However, the appearance of side phase after sintering at low pressure and a residual porosity was observed. The reason for that was partial reduction of oxides by carbon originated from graphite foil in FAST/SPS setup. In the presented work, the graphite foil was replaced by carbon-free mica foil. This measure enabled FAST/SPS sintering of porous LCO/LLZO network without side phase formation. The obtained porous skeleton was infiltrated with polymer electrolyte to fabricate a polymer-ceramic composite cathode. The cathode was assembled with an anodic half-cell consisting of dense FAST/SPS-sintered LLZO electrolyte and attached indium (In) foil used as anode. The ASSLB with polymer-ceramic composite cathode showed significantly lower interfacial impedance and remarkably higher area-specific storage capacity as compared to the similar ASSLBs with pure ceramic (porous or dense) composite cathodes. Thus, the functionality and the advanced storage capacity of the proposed polymer-ceramic cathode and related ASSLB architecture were demonstrated.[2] References: [1] M. Ihrig, M. Finsterbusch, C.-L. Tsai, A.M. Laptev, C.-h. Tu, M. Bram, Y.J. Sohn, R. Ye, S. Sevinc, S.-k. Lin, D. Fattakhova-Rohlfing, O. Guillon, Journal of Power Sources, 482 (2021) 228905. [2] M. Ihrig, R. Ye, A.M. Laptev, D. Grüner, R. Guerdelli, W.S. Scheld, M. Finsterbusch, H.-D. Wiemhöfer, D. Fattakhova-Rohlfing, O. Guillon, ACS Applied Energy Materials, 4 (2021) 10428-10432. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研小白发布了新的文献求助10
1秒前
香蕉觅云应助泷生采纳,获得10
2秒前
果果完成签到,获得积分20
4秒前
华仔应助一起去看海采纳,获得10
5秒前
乐乐应助郭子仪采纳,获得10
5秒前
HAOHAO发布了新的文献求助10
6秒前
隐形的雁完成签到,获得积分10
9秒前
只与你完成签到 ,获得积分10
10秒前
11秒前
传奇3应助怡然的扬采纳,获得10
12秒前
12秒前
一起去看海完成签到,获得积分20
12秒前
12秒前
ccm应助清脆琳采纳,获得10
12秒前
NexusExplorer应助果果采纳,获得10
13秒前
16秒前
xmhxpz发布了新的文献求助10
17秒前
DSFSD完成签到,获得积分10
20秒前
20秒前
进口小宵完成签到,获得积分10
22秒前
优秀藏鸟完成签到 ,获得积分10
24秒前
25秒前
泷生发布了新的文献求助10
25秒前
25秒前
26秒前
不配.应助MADAO采纳,获得200
26秒前
27秒前
三月完成签到,获得积分20
28秒前
cizzz发布了新的文献求助10
31秒前
果果发布了新的文献求助10
32秒前
32秒前
32秒前
Criminology34应助nadeem采纳,获得10
34秒前
英俊的铭应助Tom47采纳,获得10
34秒前
36秒前
王小茗发布了新的文献求助10
37秒前
暗中讨饭完成签到,获得积分10
38秒前
Vincent发布了新的文献求助10
39秒前
科研通AI6应助长大水果采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432