Polymer-Garnet-Based Composite Cathodes for Solid-State Li Batteries

材料科学 阴极 电解质 烧结 复合数 陶瓷 复合材料 聚合物 放电等离子烧结 离子电导率 化学工程 电极 化学 工程类 物理化学
作者
Martin Ihrig,Ruijie Ye,Alexander M. Laptev,Martin Finsterbusch,Dina Fattakhova‐Rohlfing,Olivier Guillon
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (2): 166-166
标识
DOI:10.1149/ma2022-012166mtgabs
摘要

All-solid-state lithium batteries (ASSLBs) can potentially outperform conventional Li-ion batteries with liquid or polymer electrolyte. One example for solid electrolytes is the garnet-type oxide Li 7 La 3 Zr 2 O 12 (LLZO). LLZO has a wide electrochemical window, stability vs. lithium, and good ionic conductivity at room temperature. The cathode in ASSLBs is manufactured from a cathode active material (CAM), such as LiCoO 2 (LCO). The efficiency of Li-ion storage can be improved by the use of a composite cathode consisting from a CAM and an ion-conducting ceramic, e.g. LCO/LLZO. In such a composite cathode, LLZO delivers Li-ions through the whole bulk enhancing the volumetric loading of LCO. In this work the addition of polymer electrolyte into LCO/LLZO composite cathode was proposed, aiming at further increase of cell performance due to facilitation of CAM usage, similar to the approach of manufacturing of polymer-ceramic electrolytes. They are fabricated mostly by tape casting of slurry with polymer matrix, ceramic filler and a solvent. An alternative technology includes free sintering of tape-casted LCO/LLZO porous network and subsequent infiltration by liquid or polymer electrolyte. Free sintering of LCO/LLZO composite requires relatively high temperature and/or long sintering time. This results in loss of volatile Li with decrease in electrochemical performance. In the present work the LCO/LLZO composite cathode was manufactured in a powder-based process by Field-Assisted Sintering Technique also known as Spark Plasma Sintering (FAST/SPS). Fast heating (100°C/min and higher) and application of mechanical pressure during FAST/SPS enable reduction of sintering temperature and processing time needed for fabrication of nearly-fully-dense composite.[1] Thereby, Li evaporation and grain growth can be significantly reduced. This technology was used in our previous work for fabrication of half-cells with dense LLZO electrolyte and dense LCO/LLZO composite cathode. However, the appearance of side phase after sintering at low pressure and a residual porosity was observed. The reason for that was partial reduction of oxides by carbon originated from graphite foil in FAST/SPS setup. In the presented work, the graphite foil was replaced by carbon-free mica foil. This measure enabled FAST/SPS sintering of porous LCO/LLZO network without side phase formation. The obtained porous skeleton was infiltrated with polymer electrolyte to fabricate a polymer-ceramic composite cathode. The cathode was assembled with an anodic half-cell consisting of dense FAST/SPS-sintered LLZO electrolyte and attached indium (In) foil used as anode. The ASSLB with polymer-ceramic composite cathode showed significantly lower interfacial impedance and remarkably higher area-specific storage capacity as compared to the similar ASSLBs with pure ceramic (porous or dense) composite cathodes. Thus, the functionality and the advanced storage capacity of the proposed polymer-ceramic cathode and related ASSLB architecture were demonstrated.[2] References: [1] M. Ihrig, M. Finsterbusch, C.-L. Tsai, A.M. Laptev, C.-h. Tu, M. Bram, Y.J. Sohn, R. Ye, S. Sevinc, S.-k. Lin, D. Fattakhova-Rohlfing, O. Guillon, Journal of Power Sources, 482 (2021) 228905. [2] M. Ihrig, R. Ye, A.M. Laptev, D. Grüner, R. Guerdelli, W.S. Scheld, M. Finsterbusch, H.-D. Wiemhöfer, D. Fattakhova-Rohlfing, O. Guillon, ACS Applied Energy Materials, 4 (2021) 10428-10432. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
David完成签到 ,获得积分10
1秒前
WWXWWX发布了新的文献求助10
1秒前
funny完成签到,获得积分10
1秒前
单眼皮大女孩完成签到,获得积分10
1秒前
WU完成签到,获得积分10
1秒前
hersy完成签到,获得积分10
1秒前
乐乐应助巡音幻夜采纳,获得10
2秒前
2秒前
林甜甜很甜完成签到,获得积分10
2秒前
linmm完成签到 ,获得积分10
2秒前
香蕉觅云应助可靠的又亦采纳,获得10
3秒前
熊泰山完成签到 ,获得积分10
3秒前
4秒前
Banbor2021完成签到,获得积分10
4秒前
桐桐应助WWXWWX采纳,获得10
5秒前
薛珊珊完成签到,获得积分10
5秒前
5秒前
lucky发布了新的文献求助10
5秒前
6秒前
shdgwyh完成签到,获得积分20
6秒前
达瓦里氏完成签到 ,获得积分10
7秒前
8秒前
不配.应助perovskite采纳,获得20
8秒前
8秒前
8秒前
17818521677完成签到,获得积分10
9秒前
zero完成签到,获得积分10
9秒前
歪石开通完成签到,获得积分20
9秒前
精明的丹云完成签到,获得积分20
10秒前
小伙子完成签到,获得积分0
11秒前
万能图书馆应助yao采纳,获得10
11秒前
11秒前
11秒前
yym发布了新的文献求助10
12秒前
17818521677发布了新的文献求助10
12秒前
迷人世开完成签到,获得积分10
13秒前
lucky完成签到,获得积分10
13秒前
xiaoxiaozhu完成签到,获得积分10
14秒前
zty发布了新的文献求助10
14秒前
巡音幻夜发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147162
求助须知:如何正确求助?哪些是违规求助? 2798435
关于积分的说明 7829030
捐赠科研通 2455138
什么是DOI,文献DOI怎么找? 1306576
科研通“疑难数据库(出版商)”最低求助积分说明 627838
版权声明 601567