亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Polymer-Garnet-Based Composite Cathodes for Solid-State Li Batteries

材料科学 阴极 电解质 烧结 复合数 陶瓷 复合材料 聚合物 放电等离子烧结 离子电导率 化学工程 电极 化学 物理化学 工程类
作者
Martin Ihrig,Ruijie Ye,Alexander M. Laptev,Martin Finsterbusch,Dina Fattakhova‐Rohlfing,Olivier Guillon
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (2): 166-166
标识
DOI:10.1149/ma2022-012166mtgabs
摘要

All-solid-state lithium batteries (ASSLBs) can potentially outperform conventional Li-ion batteries with liquid or polymer electrolyte. One example for solid electrolytes is the garnet-type oxide Li 7 La 3 Zr 2 O 12 (LLZO). LLZO has a wide electrochemical window, stability vs. lithium, and good ionic conductivity at room temperature. The cathode in ASSLBs is manufactured from a cathode active material (CAM), such as LiCoO 2 (LCO). The efficiency of Li-ion storage can be improved by the use of a composite cathode consisting from a CAM and an ion-conducting ceramic, e.g. LCO/LLZO. In such a composite cathode, LLZO delivers Li-ions through the whole bulk enhancing the volumetric loading of LCO. In this work the addition of polymer electrolyte into LCO/LLZO composite cathode was proposed, aiming at further increase of cell performance due to facilitation of CAM usage, similar to the approach of manufacturing of polymer-ceramic electrolytes. They are fabricated mostly by tape casting of slurry with polymer matrix, ceramic filler and a solvent. An alternative technology includes free sintering of tape-casted LCO/LLZO porous network and subsequent infiltration by liquid or polymer electrolyte. Free sintering of LCO/LLZO composite requires relatively high temperature and/or long sintering time. This results in loss of volatile Li with decrease in electrochemical performance. In the present work the LCO/LLZO composite cathode was manufactured in a powder-based process by Field-Assisted Sintering Technique also known as Spark Plasma Sintering (FAST/SPS). Fast heating (100°C/min and higher) and application of mechanical pressure during FAST/SPS enable reduction of sintering temperature and processing time needed for fabrication of nearly-fully-dense composite.[1] Thereby, Li evaporation and grain growth can be significantly reduced. This technology was used in our previous work for fabrication of half-cells with dense LLZO electrolyte and dense LCO/LLZO composite cathode. However, the appearance of side phase after sintering at low pressure and a residual porosity was observed. The reason for that was partial reduction of oxides by carbon originated from graphite foil in FAST/SPS setup. In the presented work, the graphite foil was replaced by carbon-free mica foil. This measure enabled FAST/SPS sintering of porous LCO/LLZO network without side phase formation. The obtained porous skeleton was infiltrated with polymer electrolyte to fabricate a polymer-ceramic composite cathode. The cathode was assembled with an anodic half-cell consisting of dense FAST/SPS-sintered LLZO electrolyte and attached indium (In) foil used as anode. The ASSLB with polymer-ceramic composite cathode showed significantly lower interfacial impedance and remarkably higher area-specific storage capacity as compared to the similar ASSLBs with pure ceramic (porous or dense) composite cathodes. Thus, the functionality and the advanced storage capacity of the proposed polymer-ceramic cathode and related ASSLB architecture were demonstrated.[2] References: [1] M. Ihrig, M. Finsterbusch, C.-L. Tsai, A.M. Laptev, C.-h. Tu, M. Bram, Y.J. Sohn, R. Ye, S. Sevinc, S.-k. Lin, D. Fattakhova-Rohlfing, O. Guillon, Journal of Power Sources, 482 (2021) 228905. [2] M. Ihrig, R. Ye, A.M. Laptev, D. Grüner, R. Guerdelli, W.S. Scheld, M. Finsterbusch, H.-D. Wiemhöfer, D. Fattakhova-Rohlfing, O. Guillon, ACS Applied Energy Materials, 4 (2021) 10428-10432. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
10秒前
13秒前
CipherSage应助环境催化采纳,获得10
14秒前
21秒前
26秒前
26秒前
32秒前
37秒前
zyy完成签到,获得积分10
40秒前
43秒前
45秒前
环境催化发布了新的文献求助10
50秒前
环境催化完成签到,获得积分10
57秒前
1分钟前
yuanquaner发布了新的文献求助10
1分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
2分钟前
隐形曼青应助KID采纳,获得10
2分钟前
2分钟前
Rylynn发布了新的文献求助10
2分钟前
2分钟前
KID发布了新的文献求助10
3分钟前
倔强的大萝卜完成签到 ,获得积分0
3分钟前
原子超人完成签到,获得积分10
3分钟前
冷傲迎梅完成签到 ,获得积分10
3分钟前
浮游应助Omni采纳,获得10
3分钟前
3分钟前
nbtzy完成签到,获得积分10
3分钟前
3分钟前
躺平才有生活完成签到 ,获得积分10
3分钟前
3分钟前
科目三应助科研通管家采纳,获得10
4分钟前
思源应助科研通管家采纳,获得10
4分钟前
田様应助科研通管家采纳,获得50
4分钟前
HYQ完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
学术疯子完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935411
求助须知:如何正确求助?哪些是违规求助? 4202806
关于积分的说明 13058830
捐赠科研通 3977755
什么是DOI,文献DOI怎么找? 2179602
邀请新用户注册赠送积分活动 1195669
关于科研通互助平台的介绍 1107368