Full Attention Wasserstein GAN With Gradient Normalization for Fault Diagnosis Under Imbalanced Data

鉴别器 规范化(社会学) 计算机科学 判别式 人工智能 卷积神经网络 断层(地质) 人工神经网络 机器学习 深度学习 模式识别(心理学) 数据挖掘 生成对抗网络 社会学 地质学 人类学 地震学 探测器 电信
作者
Jigang Fan,Xianfeng Yuan,Zhaoming Miao,Zihao Sun,Xiaoxue Mei,Fengyu Zhou
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-16 被引量:48
标识
DOI:10.1109/tim.2022.3190525
摘要

The fault diagnosis of rolling bearings is vital for the safe and reliable operation of mechanical equipment. However, the imbalanced data collected from the real engineering scenario bring great challenges to the deep learning-based diagnosis methods. For this purpose, this article proposes a methodology called full attention Wasserstein generative adversarial network (WGAN) with gradient normalization (FAWGAN-GN) for data augmentation and uses a shallow 1-D convolutional neural network (CNN) to perform fault diagnosis. First, a gradient normalization (GN) is introduced into the discriminator as a model-wise constraint to make it more flexible in setting the structure of the network, which leads to a more stable and faster training process. Second, the full attention (FA) mechanism is utilized to let the generator pay more attention to learning the discriminative features of the original data and generate high-quality samples. Third, to more thoroughly and deeply evaluate the data generation performance of generative adversarial networks (GANs), a more comprehensive multiple indicator-based evaluation framework is developed to avoid the one-sidedness and superficiality of using one or two simple indicators. Based on two widely applied fault diagnosis datasets and a real rolling bearing fault diagnosis testbed, extensive comparative fault diagnosis experiments are conducted to validate the effectiveness of the proposed method. Experimental results reveal that the proposed FAWGAN-GN can effectively solve the sample imbalance problem and outperforms the state-of-the-art imbalanced fault diagnosis methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒克发布了新的文献求助10
刚刚
科目三应助李浩然采纳,获得10
刚刚
安屿完成签到 ,获得积分10
刚刚
刚刚
蓝桉完成签到,获得积分10
1秒前
赘婿应助丰富的长颈鹿采纳,获得10
1秒前
1秒前
DDhappy完成签到,获得积分10
1秒前
星辰大海应助阔达的未来采纳,获得10
1秒前
aq发布了新的文献求助50
1秒前
能干耳机发布了新的文献求助10
1秒前
朴素鸡完成签到,获得积分20
2秒前
嗯嗯嗯发布了新的文献求助10
2秒前
2秒前
2秒前
xyg发布了新的文献求助10
2秒前
Rae发布了新的文献求助10
2秒前
烟花应助赵唯皓采纳,获得10
2秒前
3秒前
SciGPT应助zxp12373采纳,获得10
3秒前
番茄椰完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
春风完成签到 ,获得积分10
5秒前
5秒前
Jay01完成签到,获得积分20
5秒前
isabelwy发布了新的文献求助10
5秒前
小于子88完成签到,获得积分10
5秒前
义气芷荷完成签到 ,获得积分10
5秒前
CodeCraft应助善良尔安采纳,获得10
5秒前
酷波er应助王麒采纳,获得10
5秒前
6秒前
低温少年发布了新的文献求助10
6秒前
7秒前
7秒前
小丹完成签到,获得积分10
7秒前
CipherSage应助喵喵盖被采纳,获得10
7秒前
白藏主完成签到,获得积分10
7秒前
7秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401