Full Attention Wasserstein GAN With Gradient Normalization for Fault Diagnosis Under Imbalanced Data

鉴别器 规范化(社会学) 计算机科学 判别式 人工智能 卷积神经网络 断层(地质) 人工神经网络 机器学习 深度学习 模式识别(心理学) 数据挖掘 生成对抗网络 社会学 人类学 电信 探测器 地震学 地质学
作者
Jigang Fan,Xianfeng Yuan,Zhaoming Miao,Zihao Sun,Xiaoxue Mei,Fengyu Zhou
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-16 被引量:48
标识
DOI:10.1109/tim.2022.3190525
摘要

The fault diagnosis of rolling bearings is vital for the safe and reliable operation of mechanical equipment. However, the imbalanced data collected from the real engineering scenario bring great challenges to the deep learning-based diagnosis methods. For this purpose, this article proposes a methodology called full attention Wasserstein generative adversarial network (WGAN) with gradient normalization (FAWGAN-GN) for data augmentation and uses a shallow 1-D convolutional neural network (CNN) to perform fault diagnosis. First, a gradient normalization (GN) is introduced into the discriminator as a model-wise constraint to make it more flexible in setting the structure of the network, which leads to a more stable and faster training process. Second, the full attention (FA) mechanism is utilized to let the generator pay more attention to learning the discriminative features of the original data and generate high-quality samples. Third, to more thoroughly and deeply evaluate the data generation performance of generative adversarial networks (GANs), a more comprehensive multiple indicator-based evaluation framework is developed to avoid the one-sidedness and superficiality of using one or two simple indicators. Based on two widely applied fault diagnosis datasets and a real rolling bearing fault diagnosis testbed, extensive comparative fault diagnosis experiments are conducted to validate the effectiveness of the proposed method. Experimental results reveal that the proposed FAWGAN-GN can effectively solve the sample imbalance problem and outperforms the state-of-the-art imbalanced fault diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
白派派主发布了新的文献求助10
2秒前
Tony12发布了新的文献求助10
2秒前
CipherSage应助lalaland采纳,获得10
2秒前
楠楠完成签到 ,获得积分10
3秒前
化学发布了新的文献求助10
4秒前
Sylus发布了新的文献求助10
4秒前
完美世界应助没有昵称采纳,获得10
5秒前
田様应助Pinankieeeee采纳,获得10
6秒前
东木应助企鹅采纳,获得20
7秒前
Ava应助Smes采纳,获得10
7秒前
小兔子乖乖完成签到,获得积分10
8秒前
8秒前
Tony12完成签到,获得积分10
8秒前
深情安青应助研友_8RyzBZ采纳,获得10
9秒前
时尚以南完成签到,获得积分20
9秒前
10秒前
11秒前
苏苏发布了新的文献求助10
12秒前
所所应助sfafasfsdf采纳,获得10
13秒前
顾矜应助sfafasfsdf采纳,获得10
13秒前
李爱国应助还单身的笑翠采纳,获得10
13秒前
orixero应助无助的人采纳,获得10
14秒前
目土土发布了新的文献求助10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
yznfly应助科研通管家采纳,获得30
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
15秒前
Rondab应助科研通管家采纳,获得10
15秒前
yznfly应助科研通管家采纳,获得30
15秒前
Rondab应助科研通管家采纳,获得10
15秒前
Rondab应助科研通管家采纳,获得10
15秒前
平常的玲应助科研通管家采纳,获得10
16秒前
Rondab应助科研通管家采纳,获得80
16秒前
木头人应助科研通管家采纳,获得10
16秒前
lalala应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959141
求助须知:如何正确求助?哪些是违规求助? 3505468
关于积分的说明 11123941
捐赠科研通 3237159
什么是DOI,文献DOI怎么找? 1788988
邀请新用户注册赠送积分活动 871478
科研通“疑难数据库(出版商)”最低求助积分说明 802824