Full Attention Wasserstein GAN With Gradient Normalization for Fault Diagnosis Under Imbalanced Data

鉴别器 规范化(社会学) 计算机科学 判别式 人工智能 卷积神经网络 断层(地质) 人工神经网络 机器学习 深度学习 模式识别(心理学) 数据挖掘 生成对抗网络 社会学 地质学 人类学 地震学 探测器 电信
作者
Jigang Fan,Xianfeng Yuan,Zhaoming Miao,Zihao Sun,Xiaoxue Mei,Fengyu Zhou
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-16 被引量:48
标识
DOI:10.1109/tim.2022.3190525
摘要

The fault diagnosis of rolling bearings is vital for the safe and reliable operation of mechanical equipment. However, the imbalanced data collected from the real engineering scenario bring great challenges to the deep learning-based diagnosis methods. For this purpose, this article proposes a methodology called full attention Wasserstein generative adversarial network (WGAN) with gradient normalization (FAWGAN-GN) for data augmentation and uses a shallow 1-D convolutional neural network (CNN) to perform fault diagnosis. First, a gradient normalization (GN) is introduced into the discriminator as a model-wise constraint to make it more flexible in setting the structure of the network, which leads to a more stable and faster training process. Second, the full attention (FA) mechanism is utilized to let the generator pay more attention to learning the discriminative features of the original data and generate high-quality samples. Third, to more thoroughly and deeply evaluate the data generation performance of generative adversarial networks (GANs), a more comprehensive multiple indicator-based evaluation framework is developed to avoid the one-sidedness and superficiality of using one or two simple indicators. Based on two widely applied fault diagnosis datasets and a real rolling bearing fault diagnosis testbed, extensive comparative fault diagnosis experiments are conducted to validate the effectiveness of the proposed method. Experimental results reveal that the proposed FAWGAN-GN can effectively solve the sample imbalance problem and outperforms the state-of-the-art imbalanced fault diagnosis methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiha西希完成签到,获得积分10
刚刚
入变发布了新的文献求助10
刚刚
胡立杰发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
呼叫554完成签到,获得积分10
2秒前
2秒前
3秒前
阳光怀亦完成签到,获得积分10
4秒前
东方元语应助传统的斓采纳,获得20
5秒前
7秒前
Criminology34应助刘五州采纳,获得10
7秒前
咕咕呱发布了新的文献求助10
8秒前
8秒前
zfh完成签到,获得积分10
9秒前
Mike完成签到,获得积分10
10秒前
薛定谔的猫完成签到,获得积分10
12秒前
胡蝶发布了新的文献求助10
13秒前
如风发布了新的文献求助10
14秒前
余日秋山完成签到 ,获得积分20
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
李健应助HJJHJH采纳,获得10
17秒前
打打应助xueshu采纳,获得10
17秒前
17秒前
Ausir完成签到,获得积分20
17秒前
迅速的丑完成签到,获得积分10
18秒前
坚定向彤完成签到,获得积分10
18秒前
19秒前
安安完成签到,获得积分10
19秒前
优雅的怀莲完成签到,获得积分10
19秒前
YWJ完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
自渡发布了新的文献求助20
19秒前
20秒前
ninnn完成签到,获得积分10
20秒前
21秒前
55完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684323
求助须知:如何正确求助?哪些是违规求助? 5035995
关于积分的说明 15183907
捐赠科研通 4843598
什么是DOI,文献DOI怎么找? 2596736
邀请新用户注册赠送积分活动 1549447
关于科研通互助平台的介绍 1507972