Full Attention Wasserstein GAN With Gradient Normalization for Fault Diagnosis Under Imbalanced Data

鉴别器 规范化(社会学) 计算机科学 判别式 人工智能 卷积神经网络 断层(地质) 人工神经网络 机器学习 深度学习 模式识别(心理学) 数据挖掘 电信 探测器 地质学 社会学 地震学 人类学
作者
Jigang Fan,Xianfeng Yuan,Zhaoming Miao,Zihao Sun,Xiaoxue Mei,Fengyu Zhou
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-16 被引量:35
标识
DOI:10.1109/tim.2022.3190525
摘要

The fault diagnosis of rolling bearings is vital for the safe and reliable operation of mechanical equipment. However, the imbalanced data collected from the real engineering scenario bring great challenges to the deep learning-based diagnosis methods. For this purpose, this article proposes a methodology called full attention Wasserstein generative adversarial network (WGAN) with gradient normalization (FAWGAN-GN) for data augmentation and uses a shallow 1-D convolutional neural network (CNN) to perform fault diagnosis. First, a gradient normalization (GN) is introduced into the discriminator as a model-wise constraint to make it more flexible in setting the structure of the network, which leads to a more stable and faster training process. Second, the full attention (FA) mechanism is utilized to let the generator pay more attention to learning the discriminative features of the original data and generate high-quality samples. Third, to more thoroughly and deeply evaluate the data generation performance of generative adversarial networks (GANs), a more comprehensive multiple indicator-based evaluation framework is developed to avoid the one-sidedness and superficiality of using one or two simple indicators. Based on two widely applied fault diagnosis datasets and a real rolling bearing fault diagnosis testbed, extensive comparative fault diagnosis experiments are conducted to validate the effectiveness of the proposed method. Experimental results reveal that the proposed FAWGAN-GN can effectively solve the sample imbalance problem and outperforms the state-of-the-art imbalanced fault diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感谢超帅冬易转发科研通微信,获得积分50
刚刚
刚刚
1秒前
1秒前
lixia完成签到 ,获得积分10
1秒前
1秒前
2秒前
在水一方应助jy采纳,获得10
2秒前
2秒前
Lucas完成签到,获得积分10
3秒前
3秒前
NorthWang发布了新的文献求助10
3秒前
薄哼哼完成签到,获得积分10
3秒前
troubadourelf完成签到,获得积分10
3秒前
科研小白菜完成签到,获得积分20
4秒前
淡定的思松应助12采纳,获得10
4秒前
lan发布了新的文献求助10
4秒前
韩金龙发布了新的文献求助10
5秒前
5秒前
小飞七应助红毛兔采纳,获得10
5秒前
小仙虎殿下完成签到 ,获得积分10
5秒前
Ethan完成签到,获得积分10
6秒前
6秒前
7秒前
感谢抹茶芋泥小圆子转发科研通微信,获得积分50
7秒前
子春完成签到 ,获得积分10
7秒前
平常的纸飞机完成签到,获得积分10
7秒前
soso完成签到 ,获得积分10
9秒前
9秒前
狗狗应助跳跃乘风采纳,获得20
10秒前
小油条应助Amai采纳,获得20
10秒前
科研通AI5应助clear采纳,获得10
10秒前
韩金龙完成签到,获得积分10
11秒前
科研通AI2S应助LiShin采纳,获得10
11秒前
希望天下0贩的0应助尘雾采纳,获得10
13秒前
13秒前
12345完成签到,获得积分10
14秒前
Lialilico完成签到,获得积分10
15秒前
Akim应助我必做出来采纳,获得50
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794