A General Autonomous Driving Planner Adaptive to Scenario Characteristics

规划师 计算机科学 边界(拓扑) 运动规划 工作(物理) 模拟 工程类 人工智能 机器人 数学 机械工程 数学分析
作者
Xinyu Jiao,Zhong Cao,Junjie Chen,Kun Jiang,Diange Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 21228-21240 被引量:2
标识
DOI:10.1109/tits.2022.3185491
摘要

Autonomous vehicle requires a general planner for all possible scenarios. Existing researches design such a planner by a unified scenario description. However, it may significantly increase the planner complexity even in some simple tasks, e.g., car following, further resulting in unsatisfactory driving performance. This work aims to design a general planner which can 1) drive in all possible scenarios and 2) have lower complexity in some common scenarios. To this end, this work proposes a pertinent boundary for multi-scenario driving planning. The total approach is named as Pertinent Boundary-based Unified Decision system. Based on the original drivable area, the pertinent boundary can further support motion status and semantics of the traffic elements, which provides the potential of pertinent performance for given scenarios. The pertinent boundary can support unified driving with the drivable area, in the meantime, can be pertinently modified to support the pertinent driving decisions for identified driving scenarios (e.g., car-following, junction left turning). It will further avoid the bump between the connections of the scenarios due to the continuity of space boundary. Thus, the planner is suitable for the fully autonomous driving. The proposed method is validated in different classical driving decision scenarios. Results show that the proposed method can support pertinent driving decisions in identified scenarios, in the meantime, assure generalized cross-scenario planning when no scenario information is available. Such a method shed light on fully autonomous driving by pertinence improvement of multi-scenario decision in the complex real world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vv123456ha完成签到,获得积分10
刚刚
1秒前
mengliu完成签到,获得积分10
1秒前
碱性染料完成签到,获得积分10
1秒前
suwan完成签到,获得积分10
1秒前
美丽的芙完成签到 ,获得积分10
1秒前
桐桐应助怿愀采纳,获得10
2秒前
专一的幻莲完成签到,获得积分10
2秒前
帅气小刺猬完成签到,获得积分10
2秒前
wave完成签到,获得积分10
2秒前
Epiphany完成签到 ,获得积分10
2秒前
小斯完成签到,获得积分10
3秒前
王志新应助朱荧荧采纳,获得50
3秒前
小刘爱科研完成签到,获得积分10
3秒前
yao完成签到,获得积分10
4秒前
dong完成签到 ,获得积分10
4秒前
甜甜完成签到 ,获得积分10
5秒前
司徒诗蕾完成签到 ,获得积分10
5秒前
echo完成签到 ,获得积分20
5秒前
RandyChen完成签到,获得积分10
6秒前
zzz完成签到,获得积分10
6秒前
cjg完成签到,获得积分10
6秒前
7秒前
神勇砖头发布了新的文献求助10
7秒前
易琚完成签到,获得积分10
7秒前
科研小白完成签到,获得积分10
8秒前
狠毒的小龙虾完成签到,获得积分10
8秒前
Lee完成签到 ,获得积分10
8秒前
just完成签到,获得积分10
9秒前
只爱三十四画完成签到,获得积分10
9秒前
9秒前
伊一完成签到,获得积分10
10秒前
一株多肉完成签到,获得积分10
10秒前
zhangqhhh完成签到,获得积分10
10秒前
yu完成签到 ,获得积分10
11秒前
黄油可颂完成签到 ,获得积分10
11秒前
灿烂完成签到,获得积分10
11秒前
Ouou完成签到 ,获得积分10
12秒前
开朗醉波完成签到,获得积分10
12秒前
鳄鱼蛋完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188500
求助须知:如何正确求助?哪些是违规求助? 4372783
关于积分的说明 13614126
捐赠科研通 4226090
什么是DOI,文献DOI怎么找? 2318131
邀请新用户注册赠送积分活动 1316696
关于科研通互助平台的介绍 1266439