铬
聚乙烯吡咯烷酮
光催化
化学
聚合物
降水
吸附
半导体
吸收(声学)
化学工程
材料科学
核化学
高分子化学
有机化学
催化作用
气象学
复合材料
工程类
物理
光电子学
作者
Lan Yuan,Zhaoyi Geng,Shen Zhang,Jikun Xu,Fen Guo,Bidyut Kumar Kundu,Chuang Han
标识
DOI:10.1016/j.jcis.2022.07.107
摘要
Chromium (Cr)-containing wastewater has caused a serious threat to the environment due to its high toxicity and mobility. The traditional Cr removal methods are generally based on an inconvenient two-step process with the first transformation of Cr(VI) to Cr(III) and the consecutive removal of Cr(III) by precipitation. Herein, we demonstrate the efficient all-in-one removal of total Cr through the simultaneous photocatalytic reduction of Cr(VI) to Cr(III) and in-situ fixation of Cr(III) over the nonconjugated polymer engineered ZnIn2S4 (P-ZIS) photocatalyst. By in-situ polyvinylpyrrolidone (PVP) modification of ZIS during the preparation process, the resulted P-ZIS can completely reduce Cr(VI) within 60 min under visible light irradiation. The kinetics of Cr(VI) reduction over P-ZIS is 2.8 times as that of pure ZIS, which is proved to be benefited from the enhanced light absorption, uplifted conduction band for strengthening reducibility, and accelerated charge carrier transfer. Moreover, as compared to ZIS, P-ZIS also exhibits significantly improved in-situ adsorption ability for Cr(III), thus resulting in efficient all-in-one elimination of total Cr within a single system. We show that this polymer engineered strategy could be a facile and versatile protocol for modulating the electronic structure and surface chemistry of the semiconductor photocatalysts towards complete, safe, and cost-efficient removal of Cr.
科研通智能强力驱动
Strongly Powered by AbleSci AI