Protease Activity Analysis: A Toolkit for Analyzing Enzyme Activity Data

蛋白酶 计算机科学 蛋白酵素 计算生物学 可视化 人工智能 化学 生物 生物化学
作者
Ava P. Amini,Carmen Martin-Alonso,Melodi Anahtar,Cathy S. Wang,Sangeeta N. Bhatia
出处
期刊:ACS omega [American Chemical Society]
卷期号:7 (28): 24292-24301 被引量:5
标识
DOI:10.1021/acsomega.2c01559
摘要

Analyzing the activity of proteases and their substrates is critical to defining the biological functions of these enzymes and to designing new diagnostics and therapeutics that target protease dysregulation in disease. While a wide range of databases and algorithms have been created to better predict protease cleavage sites, there is a dearth of computational tools to automate analysis of in vitro and in vivo protease assays. This necessitates individual researchers to develop their own analytical pipelines, resulting in a lack of standardization across the field. To facilitate protease research, here we present Protease Activity Analysis (PAA), a toolkit for the preprocessing, visualization, machine learning analysis, and querying of protease activity data sets. PAA leverages a Python-based object-oriented implementation that provides a modular framework for streamlined analysis across three major components. First, PAA provides a facile framework to query data sets of synthetic peptide substrates and their cleavage susceptibilities across a diverse set of proteases. To complement the database functionality, PAA also includes tools for the automated analysis and visualization of user-input enzyme-substrate activity measurements generated through in vitro screens against synthetic peptide substrates. Finally, PAA supports a set of modular machine learning functions to analyze in vivo protease activity signatures that are generated by activity-based sensors. Overall, PAA offers the protease community a breadth of computational tools to streamline research, taking a step toward standardizing data analysis across the field and in chemical biology and biochemistry at large.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ydning33发布了新的文献求助10
1秒前
1秒前
2秒前
4秒前
打打应助优秀的绿旋采纳,获得10
5秒前
Orange应助蕊蕊采纳,获得10
5秒前
6秒前
ZX0501完成签到,获得积分10
6秒前
7秒前
9秒前
明亮紫易发布了新的文献求助10
10秒前
wanci应助cpuczy采纳,获得10
10秒前
zz完成签到,获得积分10
12秒前
yixiao发布了新的文献求助10
13秒前
李爱国应助ssw采纳,获得10
14秒前
zxvcbnm发布了新的文献求助10
14秒前
14秒前
想毕业的小李完成签到,获得积分10
16秒前
17秒前
不配.应助yixiao采纳,获得10
17秒前
17秒前
19秒前
19秒前
失眠的蓝发布了新的文献求助10
19秒前
20秒前
cpuczy发布了新的文献求助10
24秒前
深情安青应助king采纳,获得10
26秒前
琪qi完成签到,获得积分20
27秒前
不配.应助秋云采纳,获得10
27秒前
29秒前
30秒前
科研通AI2S应助含蓄的幻竹采纳,获得10
30秒前
zxvcbnm发布了新的文献求助10
31秒前
大力的百合完成签到,获得积分20
32秒前
32秒前
32秒前
琪qi发布了新的文献求助10
33秒前
蕊蕊发布了新的文献求助10
34秒前
小高同学发布了新的文献求助10
36秒前
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136281
求助须知:如何正确求助?哪些是违规求助? 2787312
关于积分的说明 7780922
捐赠科研通 2443313
什么是DOI,文献DOI怎么找? 1299106
科研通“疑难数据库(出版商)”最低求助积分说明 625325
版权声明 600905