Reconstructing ocean subsurface salinity at high resolution using a machine learning approach

盐度 中尺度气象学 高度计 海面温度 卫星 海面高度 气候学 地质学 环境科学 温盐度图 遥感 海洋学 工程类 航空航天工程
作者
Tian Tian,Lijing Cheng,Gongjie Wang,John Abraham,Shihe Ren,Jiang Zhu,Junqiang Song,Hongze Leng
标识
DOI:10.5194/essd-2022-236
摘要

Abstract. A gridded ocean subsurface salinity dataset with global coverage is useful for research on climate change and its variability. Here, we explore a machine learning approach to reconstruct a high-resolution (0.25° × 0.25°) ocean subsurface (0–2000 m) salinity dataset for the period 1993–2018 by merging in situ salinity profile observations with high-resolution (0.25° × 0.25°) satellite remote sensing altimetry absolute dynamic topography (ADT), sea surface temperature (SST), sea surface wind (SSW) field data, and a coarse resolution (1° × 1°) gridded salinity product. We show that the feed-forward neural network approach can effectively transfer small-scale spatial variations in ADT, SST and SSW fields into the 0.25° × 0.25° salinity field. The root-mean-square error (RMSE) can be reduced by ~11 % on a global-average basis compared with the 1° × 1° salinity gridded field. The reduction in RMSE is much larger in the upper ocean than the deep ocean, because of stronger mesoscale variations in the upper layers. Besides, the new 0.25° × 0.25° reconstruction shows more realistic spatial signals in the regions with strong mesoscale variations, e.g., the Gulf Stream, Kuroshio, and Antarctic Circumpolar Current regions, than the 1° × 1° resolution product, indicating the efficiency of the machine learning approach in bringing satellite observations together with in situ observations. The large-scale salinity patterns from 0.25° × 0.25° data are consistent with the 1° × 1°gridded salinity field, suggesting the persistence of the large-scale signals in the high-resolution reconstruction. The successful application of machine learning in this study provides an alternative approach for ocean and climate data reconstruction that can complement the existing data assimilation and objective analysis methods. The reconstructed IAP0.25° dataset is freely available at http://dx.doi.org/10.12157/IOCAS.20220711.001 (Tian et al., 2022).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
TianlangPan发布了新的文献求助10
1秒前
1秒前
小文完成签到,获得积分10
1秒前
Happyness应助颜凡桃采纳,获得10
2秒前
Lemon_Lei关注了科研通微信公众号
3秒前
sdniuidifod完成签到,获得积分10
3秒前
Lin完成签到 ,获得积分10
3秒前
浮云完成签到,获得积分10
3秒前
3秒前
Wei驳回了李健应助
4秒前
wy发布了新的文献求助10
5秒前
852应助S77采纳,获得10
5秒前
无心的平蝶完成签到,获得积分10
5秒前
啦啦啦完成签到 ,获得积分10
5秒前
万能图书馆应助藿香采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
samuel发布了新的文献求助10
7秒前
TianlangPan完成签到,获得积分10
8秒前
阔达的孤丝完成签到,获得积分10
9秒前
lily发布了新的文献求助10
10秒前
欣喜靖发布了新的文献求助10
11秒前
11秒前
亮总完成签到,获得积分10
11秒前
一只科研狗完成签到,获得积分10
11秒前
12秒前
12秒前
科研通AI2S应助晚风采纳,获得10
12秒前
一手灵魂完成签到,获得积分10
12秒前
14秒前
14秒前
jcy完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
17秒前
油条发布了新的文献求助10
18秒前
Zhaoyuemeng完成签到 ,获得积分10
18秒前
英俊绝义发布了新的文献求助10
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126