Reconstructing ocean subsurface salinity at high resolution using a machine learning approach

盐度 中尺度气象学 高度计 海面温度 卫星 海面高度 气候学 地质学 环境科学 温盐度图 遥感 海洋学 工程类 航空航天工程
作者
Tian Tian,Lijing Cheng,Gongjie Wang,John Abraham,Shihe Ren,Jiang Zhu,Junqiang Song,Hongze Leng
标识
DOI:10.5194/essd-2022-236
摘要

Abstract. A gridded ocean subsurface salinity dataset with global coverage is useful for research on climate change and its variability. Here, we explore a machine learning approach to reconstruct a high-resolution (0.25° × 0.25°) ocean subsurface (0–2000 m) salinity dataset for the period 1993–2018 by merging in situ salinity profile observations with high-resolution (0.25° × 0.25°) satellite remote sensing altimetry absolute dynamic topography (ADT), sea surface temperature (SST), sea surface wind (SSW) field data, and a coarse resolution (1° × 1°) gridded salinity product. We show that the feed-forward neural network approach can effectively transfer small-scale spatial variations in ADT, SST and SSW fields into the 0.25° × 0.25° salinity field. The root-mean-square error (RMSE) can be reduced by ~11 % on a global-average basis compared with the 1° × 1° salinity gridded field. The reduction in RMSE is much larger in the upper ocean than the deep ocean, because of stronger mesoscale variations in the upper layers. Besides, the new 0.25° × 0.25° reconstruction shows more realistic spatial signals in the regions with strong mesoscale variations, e.g., the Gulf Stream, Kuroshio, and Antarctic Circumpolar Current regions, than the 1° × 1° resolution product, indicating the efficiency of the machine learning approach in bringing satellite observations together with in situ observations. The large-scale salinity patterns from 0.25° × 0.25° data are consistent with the 1° × 1°gridded salinity field, suggesting the persistence of the large-scale signals in the high-resolution reconstruction. The successful application of machine learning in this study provides an alternative approach for ocean and climate data reconstruction that can complement the existing data assimilation and objective analysis methods. The reconstructed IAP0.25° dataset is freely available at http://dx.doi.org/10.12157/IOCAS.20220711.001 (Tian et al., 2022).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助大萱采纳,获得10
1秒前
1秒前
落寞电灯胆完成签到,获得积分10
4秒前
4秒前
5秒前
aaa发布了新的文献求助10
5秒前
6秒前
爆米花应助沧海云采纳,获得10
6秒前
陈迪威完成签到,获得积分10
7秒前
yang完成签到 ,获得积分10
8秒前
8秒前
8秒前
123发布了新的文献求助10
11秒前
穆行恶发布了新的文献求助10
11秒前
YYGQ完成签到,获得积分10
12秒前
12秒前
14秒前
defndcdjjkb发布了新的文献求助10
14秒前
赘婿应助aaa采纳,获得10
14秒前
善良的橄榄色芭蕉鲨鱼完成签到,获得积分10
14秒前
科研通AI2S应助YYGQ采纳,获得10
17秒前
芒刺完成签到,获得积分10
18秒前
18秒前
小树苗发布了新的文献求助10
19秒前
19秒前
ahunhy完成签到,获得积分10
19秒前
19秒前
123完成签到,获得积分10
20秒前
20秒前
Mr杜发布了新的文献求助10
21秒前
楠楠完成签到,获得积分10
21秒前
眉姐姐的藕粉桂花糖糕完成签到,获得积分10
22秒前
橙子完成签到,获得积分10
22秒前
hsy发布了新的文献求助10
22秒前
asdasd完成签到,获得积分10
22秒前
科研通AI2S应助qudie采纳,获得10
23秒前
小冯发布了新的文献求助10
24秒前
24秒前
冬云发布了新的文献求助10
24秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135943
求助须知:如何正确求助?哪些是违规求助? 2786734
关于积分的说明 7779353
捐赠科研通 2442999
什么是DOI,文献DOI怎么找? 1298768
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870