Reconstructing ocean subsurface salinity at high resolution using a machine learning approach

盐度 中尺度气象学 高度计 海面温度 卫星 海面高度 气候学 地质学 环境科学 温盐度图 遥感 海洋学 工程类 航空航天工程
作者
Tian Tian,Lijing Cheng,Gongjie Wang,John Abraham,Shihe Ren,Jiang Zhu,Junqiang Song,Hongze Leng
标识
DOI:10.5194/essd-2022-236
摘要

Abstract. A gridded ocean subsurface salinity dataset with global coverage is useful for research on climate change and its variability. Here, we explore a machine learning approach to reconstruct a high-resolution (0.25° × 0.25°) ocean subsurface (0–2000 m) salinity dataset for the period 1993–2018 by merging in situ salinity profile observations with high-resolution (0.25° × 0.25°) satellite remote sensing altimetry absolute dynamic topography (ADT), sea surface temperature (SST), sea surface wind (SSW) field data, and a coarse resolution (1° × 1°) gridded salinity product. We show that the feed-forward neural network approach can effectively transfer small-scale spatial variations in ADT, SST and SSW fields into the 0.25° × 0.25° salinity field. The root-mean-square error (RMSE) can be reduced by ~11 % on a global-average basis compared with the 1° × 1° salinity gridded field. The reduction in RMSE is much larger in the upper ocean than the deep ocean, because of stronger mesoscale variations in the upper layers. Besides, the new 0.25° × 0.25° reconstruction shows more realistic spatial signals in the regions with strong mesoscale variations, e.g., the Gulf Stream, Kuroshio, and Antarctic Circumpolar Current regions, than the 1° × 1° resolution product, indicating the efficiency of the machine learning approach in bringing satellite observations together with in situ observations. The large-scale salinity patterns from 0.25° × 0.25° data are consistent with the 1° × 1°gridded salinity field, suggesting the persistence of the large-scale signals in the high-resolution reconstruction. The successful application of machine learning in this study provides an alternative approach for ocean and climate data reconstruction that can complement the existing data assimilation and objective analysis methods. The reconstructed IAP0.25° dataset is freely available at http://dx.doi.org/10.12157/IOCAS.20220711.001 (Tian et al., 2022).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助William鉴哲采纳,获得10
刚刚
1秒前
咩咩完成签到,获得积分20
2秒前
合一海盗应助wtg采纳,获得200
2秒前
2秒前
Grayball应助ccc采纳,获得10
2秒前
bkagyin应助猪猪hero采纳,获得10
3秒前
3秒前
科研通AI5应助顺利毕业采纳,获得10
4秒前
领导范儿应助spray采纳,获得30
4秒前
4秒前
长风完成签到,获得积分10
5秒前
6秒前
吴岳发布了新的文献求助10
6秒前
科研通AI2S应助我是125采纳,获得10
7秒前
涛涛完成签到,获得积分10
7秒前
轩辕德地发布了新的文献求助10
8秒前
科研通AI2S应助jidou1011采纳,获得10
8秒前
魔幻的妖丽完成签到 ,获得积分10
9秒前
黄晓杰2024完成签到,获得积分10
10秒前
枫叶完成签到,获得积分10
11秒前
11秒前
12秒前
小二郎应助虚心盼晴采纳,获得10
12秒前
俊逸的盛男完成签到 ,获得积分10
12秒前
14秒前
脑洞疼应助枫叶采纳,获得10
15秒前
15秒前
Gyrate完成签到,获得积分10
16秒前
李李发布了新的文献求助50
16秒前
dashi完成签到 ,获得积分10
16秒前
无花果应助一天八杯水采纳,获得10
16秒前
16秒前
SS发布了新的文献求助10
17秒前
顺顺发布了新的文献求助10
18秒前
18秒前
18秒前
www发布了新的文献求助10
18秒前
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808