盐度
中尺度气象学
高度计
海面温度
卫星
海面高度
气候学
地质学
环境科学
温盐度图
遥感
海洋学
工程类
航空航天工程
作者
Tian Tian,Lijing Cheng,Gongjie Wang,John Abraham,Shihe Ren,Jiang Zhu,Junqiang Song,Hongze Leng
标识
DOI:10.5194/essd-2022-236
摘要
Abstract. A gridded ocean subsurface salinity dataset with global coverage is useful for research on climate change and its variability. Here, we explore a machine learning approach to reconstruct a high-resolution (0.25° × 0.25°) ocean subsurface (0–2000 m) salinity dataset for the period 1993–2018 by merging in situ salinity profile observations with high-resolution (0.25° × 0.25°) satellite remote sensing altimetry absolute dynamic topography (ADT), sea surface temperature (SST), sea surface wind (SSW) field data, and a coarse resolution (1° × 1°) gridded salinity product. We show that the feed-forward neural network approach can effectively transfer small-scale spatial variations in ADT, SST and SSW fields into the 0.25° × 0.25° salinity field. The root-mean-square error (RMSE) can be reduced by ~11 % on a global-average basis compared with the 1° × 1° salinity gridded field. The reduction in RMSE is much larger in the upper ocean than the deep ocean, because of stronger mesoscale variations in the upper layers. Besides, the new 0.25° × 0.25° reconstruction shows more realistic spatial signals in the regions with strong mesoscale variations, e.g., the Gulf Stream, Kuroshio, and Antarctic Circumpolar Current regions, than the 1° × 1° resolution product, indicating the efficiency of the machine learning approach in bringing satellite observations together with in situ observations. The large-scale salinity patterns from 0.25° × 0.25° data are consistent with the 1° × 1°gridded salinity field, suggesting the persistence of the large-scale signals in the high-resolution reconstruction. The successful application of machine learning in this study provides an alternative approach for ocean and climate data reconstruction that can complement the existing data assimilation and objective analysis methods. The reconstructed IAP0.25° dataset is freely available at http://dx.doi.org/10.12157/IOCAS.20220711.001 (Tian et al., 2022).
科研通智能强力驱动
Strongly Powered by AbleSci AI