人工智能
分辨率(逻辑)
计算机科学
图像分辨率
相似性(几何)
生成语法
生成对抗网络
模式识别(心理学)
分割
均方误差
计算机视觉
图像(数学)
超分辨率
对抗制
度量(数据仓库)
数学
数据挖掘
统计
作者
Shawkh Ibne Rashid,Elham Shakibapour,Mehran Ebrahimi
出处
期刊:Cornell University - arXiv
日期:2022-01-01
标识
DOI:10.48550/arxiv.2207.08036
摘要
Spatial resolution of medical images can be improved using super-resolution methods. Real Enhanced Super Resolution Generative Adversarial Network (Real-ESRGAN) is one of the recent effective approaches utilized to produce higher resolution images, given input images of lower resolution. In this paper, we apply this method to enhance the spatial resolution of 2D MR images. In our proposed approach, we slightly modify the structure of the Real-ESRGAN to train 2D Magnetic Resonance images (MRI) taken from the Brain Tumor Segmentation Challenge (BraTS) 2018 dataset. The obtained results are validated qualitatively and quantitatively by computing SSIM (Structural Similarity Index Measure), NRMSE (Normalized Root Mean Square Error), MAE (Mean Absolute Error), and VIF (Visual Information Fidelity) values.
科研通智能强力驱动
Strongly Powered by AbleSci AI