Semi-Supervised Federated Heterogeneous Transfer Learning

计算机科学 学习迁移 机器学习 人工智能
作者
Siwei Feng,Boyang Li,Han Yu,Yang Liu,Qiang Yang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:252: 109384-109384 被引量:9
标识
DOI:10.1016/j.knosys.2022.109384
摘要

Federated learning (FL) is a privacy-preserving paradigm that collaboratively train machine learning models with distributed data stored in different silos without exposing sensitive information. Different from most existing FL approaches requiring data from different parties share either the same feature space or sample ID space, federated transfer learning (FTL), which is a recently proposed FL concept, is designed for situations where data from different parties differ not only in samples but also in feature space. However, like most traditional FL approaches, FTL methods also suffer from issues caused by insufficiency of overlapping data. In this paper, we propose a novel FTL framework referred to as Semi-Supervised Federated Heterogeneous Transfer Learning (SFHTL) to leverage on the unlabeled non-overlapping samples to reduce model overfitting as a result of insufficient overlapping training samples in FL scenarios. Unlike existing FTL approaches, SFHTL makes use of non-overlapping samples from all parties to expand the training set for each party to improve local model performance. Through extensive experimental evaluation based on real-world datasets, we demonstrate significant advantages of SFHTL over state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿孝完成签到,获得积分10
刚刚
罗又柔应助孟孟采纳,获得10
1秒前
果果阮发布了新的文献求助10
2秒前
1111完成签到,获得积分10
3秒前
科研通AI2S应助xiaoran采纳,获得10
3秒前
YY发布了新的文献求助10
3秒前
啾啾发布了新的文献求助10
3秒前
6秒前
小蘑菇应助标致夏真采纳,获得10
6秒前
老实的石头完成签到,获得积分10
7秒前
tRNA完成签到,获得积分10
9秒前
Ava应助啾啾采纳,获得10
9秒前
思源应助thchiang采纳,获得10
9秒前
王超远完成签到,获得积分10
9秒前
斯文问旋完成签到,获得积分10
10秒前
10秒前
善学以致用应助视野胤采纳,获得10
11秒前
Doc完成签到,获得积分10
11秒前
刘晓倩发布了新的文献求助10
12秒前
12秒前
14秒前
iNk应助xiaobai采纳,获得10
15秒前
不配.应助专注的问筠采纳,获得10
17秒前
吕耀炜完成签到,获得积分10
17秒前
琉璃苣应助Iwylm采纳,获得10
17秒前
cach完成签到,获得积分10
18秒前
moon完成签到,获得积分10
19秒前
19秒前
扣子发布了新的文献求助10
21秒前
21秒前
浅尝离白应助真实的逍遥采纳,获得50
22秒前
23秒前
24秒前
hdh完成签到,获得积分10
24秒前
YJL发布了新的文献求助10
24秒前
LYB吕发布了新的文献求助10
25秒前
26秒前
26秒前
DD发布了新的文献求助10
26秒前
26秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137994
求助须知:如何正确求助?哪些是违规求助? 2788986
关于积分的说明 7789404
捐赠科研通 2445432
什么是DOI,文献DOI怎么找? 1300328
科研通“疑难数据库(出版商)”最低求助积分说明 625900
版权声明 601046