重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Patches Are All You Need?

业务
作者
Trockman, Asher,Kolter, J. Zico
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2201.09792
摘要

Although convolutional networks have been the dominant architecture for vision tasks for many years, recent experiments have shown that Transformer-based models, most notably the Vision Transformer (ViT), may exceed their performance in some settings. However, due to the quadratic runtime of the self-attention layers in Transformers, ViTs require the use of patch embeddings, which group together small regions of the image into single input features, in order to be applied to larger image sizes. This raises a question: Is the performance of ViTs due to the inherently-more-powerful Transformer architecture, or is it at least partly due to using patches as the input representation? In this paper, we present some evidence for the latter: specifically, we propose the ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on patches as input, separates the mixing of spatial and channel dimensions, and maintains equal size and resolution throughout the network. In contrast, however, the ConvMixer uses only standard convolutions to achieve the mixing steps. Despite its simplicity, we show that the ConvMixer outperforms the ViT, MLP-Mixer, and some of their variants for similar parameter counts and data set sizes, in addition to outperforming classical vision models such as the ResNet. Our code is available at https://github.com/locuslab/convmixer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助苦咖啡采纳,获得10
刚刚
隐形萃发布了新的文献求助10
1秒前
1秒前
浮游应助温柔的语柔采纳,获得10
2秒前
2秒前
满意怜容发布了新的文献求助10
3秒前
深情安青应助Dr.向采纳,获得10
3秒前
苗条采蓝发布了新的文献求助10
3秒前
crane完成签到,获得积分10
3秒前
852应助MailkMonk采纳,获得10
3秒前
梁凯华完成签到,获得积分10
3秒前
4秒前
kiki发布了新的文献求助10
4秒前
112完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
1renebaebae完成签到,获得积分20
6秒前
SciGPT应助听风说采纳,获得10
7秒前
xlong发布了新的文献求助10
8秒前
丘比特应助老实的百招采纳,获得10
8秒前
科研通AI6应助doctorkys采纳,获得30
9秒前
Kuuga完成签到,获得积分10
9秒前
9秒前
杨小豆发布了新的文献求助10
9秒前
库凯伊完成签到,获得积分10
9秒前
金桔柠檬完成签到,获得积分10
9秒前
好运6连发布了新的文献求助10
10秒前
烟花应助月亮0927采纳,获得10
10秒前
10秒前
orixero应助梅江采纳,获得10
10秒前
ZZzz发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
lilei发布了新的文献求助10
11秒前
11秒前
典雅问寒完成签到,获得积分0
11秒前
薄荷完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466189
求助须知:如何正确求助?哪些是违规求助? 4570151
关于积分的说明 14323225
捐赠科研通 4496641
什么是DOI,文献DOI怎么找? 2463456
邀请新用户注册赠送积分活动 1452353
关于科研通互助平台的介绍 1427516