Patches Are All You Need?

业务
作者
Trockman, Asher,Kolter, J. Zico
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2201.09792
摘要

Although convolutional networks have been the dominant architecture for vision tasks for many years, recent experiments have shown that Transformer-based models, most notably the Vision Transformer (ViT), may exceed their performance in some settings. However, due to the quadratic runtime of the self-attention layers in Transformers, ViTs require the use of patch embeddings, which group together small regions of the image into single input features, in order to be applied to larger image sizes. This raises a question: Is the performance of ViTs due to the inherently-more-powerful Transformer architecture, or is it at least partly due to using patches as the input representation? In this paper, we present some evidence for the latter: specifically, we propose the ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on patches as input, separates the mixing of spatial and channel dimensions, and maintains equal size and resolution throughout the network. In contrast, however, the ConvMixer uses only standard convolutions to achieve the mixing steps. Despite its simplicity, we show that the ConvMixer outperforms the ViT, MLP-Mixer, and some of their variants for similar parameter counts and data set sizes, in addition to outperforming classical vision models such as the ResNet. Our code is available at https://github.com/locuslab/convmixer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助xiaomili采纳,获得10
2秒前
2秒前
2秒前
爆米花应助啦啦啦采纳,获得10
3秒前
新之助发布了新的文献求助10
3秒前
3秒前
qw1完成签到,获得积分20
3秒前
舒适的尔容完成签到,获得积分10
3秒前
Ryan完成签到,获得积分10
4秒前
高大笙完成签到,获得积分10
4秒前
兑润泽完成签到,获得积分10
4秒前
4秒前
reece完成签到 ,获得积分10
4秒前
5秒前
wsh071117完成签到,获得积分10
5秒前
小蘑菇应助mwy采纳,获得10
5秒前
无花果应助刘莅采纳,获得10
5秒前
5秒前
ED应助lqkcqmu采纳,获得10
6秒前
6秒前
6秒前
高贵以珊发布了新的文献求助10
7秒前
7秒前
7秒前
明理的惜雪完成签到,获得积分10
8秒前
科目三应助天地一沙鸥采纳,获得10
8秒前
Jerry完成签到,获得积分10
8秒前
LHTTT完成签到,获得积分10
8秒前
隐形曼青应助鲍建芳采纳,获得10
8秒前
包容的琦完成签到,获得积分20
8秒前
9秒前
传奇3应助mjlv采纳,获得10
9秒前
无花果应助烩面大师采纳,获得10
10秒前
涂江渝完成签到 ,获得积分10
11秒前
包容的琦发布了新的文献求助10
11秒前
HMG1COA发布了新的文献求助10
11秒前
桃子e完成签到 ,获得积分10
12秒前
12秒前
海纳百川发布了新的文献求助10
12秒前
lihua发布了新的文献求助20
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600