亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity

应变工程 材料科学 贵金属 电催化剂 催化作用 纳米材料 无定形固体 纳米技术 分解水 化学物理 金属 化学工程 结晶学 电化学 物理化学 化学 光电子学 冶金 电极 有机化学 工程类 光催化 生物化学
作者
Geng Wu,Xiao Han,Jinyan Cai,Peiqun Yin,Peixin Cui,Xusheng Zheng,Hai Li,Cai Chen,Gongming Wang,Xun Hong
出处
期刊:Nature Communications [Springer Nature]
卷期号:13 (1) 被引量:201
标识
DOI:10.1038/s41467-022-31971-4
摘要

Strain has been shown to modulate the electronic structure of noble metal nanomaterials and alter their catalytic performances. Since strain is spatially dependent, it is challenging to expose the active strained interfaces by structural engineering with atomic precision. Herein, we report a facile method to manipulate the planar strain in ultrathin noble metal nanosheets by constructing amorphous-crystalline phase boundaries that can expose the active strained interfaces. Geometric-phase analysis and electron diffraction profile demonstrate the in-plane amorphous-crystalline boundaries can induce about 4% surface tensile strain in the nanosheets. The strained Ir nanosheets display substantially enhanced intrinsic activity toward the hydrogen evolution reaction electrocatalysis with a turnover frequency value 4.5-fold higher than the benchmark Pt/C catalyst. Density functional theory calculations verify that the tensile strain optimizes the d-band states and hydrogen adsorption properties of the strained Ir nanosheets to improve catalysis. Furthermore, the in-plane strain engineering method is demonstrated to be a general approach to boost the hydrogen evolution performance of Ru and Rh nanosheets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
15秒前
15秒前
好人完成签到,获得积分10
18秒前
18秒前
无限绮南发布了新的文献求助10
21秒前
科研小猪完成签到 ,获得积分10
23秒前
健忘的溪灵完成签到 ,获得积分10
24秒前
积极的绫发布了新的文献求助10
26秒前
Garnieta完成签到,获得积分10
30秒前
cns小菜鸡发布了新的文献求助20
32秒前
43秒前
小昭发布了新的文献求助10
49秒前
FashionBoy应助保持科研热情采纳,获得10
51秒前
cns小菜鸡完成签到,获得积分10
52秒前
53秒前
xxx完成签到,获得积分10
54秒前
silence完成签到 ,获得积分10
56秒前
Tongzai完成签到,获得积分10
56秒前
白小黑发布了新的文献求助10
57秒前
58秒前
沫晨发布了新的文献求助10
59秒前
1分钟前
su完成签到 ,获得积分10
1分钟前
小马甲应助飞鞚采纳,获得10
1分钟前
1分钟前
TRISTE发布了新的文献求助20
1分钟前
1分钟前
科研通AI6.1应助111采纳,获得10
1分钟前
欢喜的怜菡完成签到,获得积分10
1分钟前
1分钟前
VDC应助欢喜的怜菡采纳,获得10
1分钟前
1分钟前
叙余完成签到 ,获得积分10
1分钟前
DduYy完成签到,获得积分10
1分钟前
pluto应助愉快谷芹采纳,获得10
1分钟前
嗯对完成签到 ,获得积分10
1分钟前
科研通AI2S应助wzc采纳,获得10
1分钟前
唠叨的逍遥完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754768
求助须知:如何正确求助?哪些是违规求助? 5489338
关于积分的说明 15380586
捐赠科研通 4893238
什么是DOI,文献DOI怎么找? 2631830
邀请新用户注册赠送积分活动 1579747
关于科研通互助平台的介绍 1535552