应变工程
材料科学
贵金属
电催化剂
催化作用
纳米材料
无定形固体
纳米技术
氢
分解水
化学物理
金属
化学工程
结晶学
电化学
物理化学
化学
光电子学
硅
冶金
生物化学
电极
光催化
工程类
有机化学
作者
Geng Wu,Xiao Han,Jinyan Cai,Peiqun Yin,Peixin Cui,Xusheng Zheng,Hai Li,Cai Chen,Gongming Wang,Xun Hong
标识
DOI:10.1038/s41467-022-31971-4
摘要
Strain has been shown to modulate the electronic structure of noble metal nanomaterials and alter their catalytic performances. Since strain is spatially dependent, it is challenging to expose the active strained interfaces by structural engineering with atomic precision. Herein, we report a facile method to manipulate the planar strain in ultrathin noble metal nanosheets by constructing amorphous-crystalline phase boundaries that can expose the active strained interfaces. Geometric-phase analysis and electron diffraction profile demonstrate the in-plane amorphous-crystalline boundaries can induce about 4% surface tensile strain in the nanosheets. The strained Ir nanosheets display substantially enhanced intrinsic activity toward the hydrogen evolution reaction electrocatalysis with a turnover frequency value 4.5-fold higher than the benchmark Pt/C catalyst. Density functional theory calculations verify that the tensile strain optimizes the d-band states and hydrogen adsorption properties of the strained Ir nanosheets to improve catalysis. Furthermore, the in-plane strain engineering method is demonstrated to be a general approach to boost the hydrogen evolution performance of Ru and Rh nanosheets.
科研通智能强力驱动
Strongly Powered by AbleSci AI