Deep Learning-Based Trajectory Planning and Control for Autonomous Ground Vehicle Parking Maneuver

弹道 控制器(灌溉) 规划师 计算机科学 运动规划 人工神经网络 控制工程 车辆动力学 钥匙(锁) 人工智能 控制理论(社会学) 控制(管理) 工程类 机器人 生物 汽车工程 物理 天文 计算机安全 农学
作者
Runqi Chai,Derong Liu,Tianhao Liu,Antonios Tsourdos,Yuanqing Xia,Senchun Chai
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 1633-1647 被引量:68
标识
DOI:10.1109/tase.2022.3183610
摘要

In this paper, a novel integrated real-time trajectory planning and tracking control framework capable of dealing with autonomous ground vehicle (AGV) parking maneuver problems is presented. In the motion planning component, a newly-proposed idea of utilizing deep neural networks (DNNs) for approximating optimal parking trajectories is further extended by taking advantages of a recurrent network structure. The main aim is to fully exploit the inherent relationships between different vehicle states in the training process. Furthermore, two transfer learning strategies are applied such that the developed motion planner can be adapted to suit various AGVs. In order to follow the planned maneuver trajectory, an adaptive learning tracking control algorithm is designed and served as the motion controller. By adapting the network parameters, the stability of the proposed control scheme, along with the convergence of tracking errors, can be theoretically guaranteed. In order to validate the effectiveness and emphasize key features of our proposal, a number of experimental studies and comparative analysis were executed. The obtained results reveal that the proposed strategy can enable the AGV to fulfill the parking mission with enhanced motion planning and control performance. Note to Practitioners —This article was motivated by the problem of optimal automatic parking planning and tracking control for autonomous ground vehicles (AGVs) maneuvering in a restricted environment (e.g., constrained parking regions). A number of challenges may arise when dealing with this problem (e.g., the model uncertainties involved in the vehicle dynamics, system variable limits, and the presence of external disturbances). Existing approaches to address such a problem usually exploit the merit of optimization-based planning/control techniques such as model predictive control and dynamic programming in order for an optimal solution. However, two practical issues may require further considerations: 1). The nonlinear (re)optimization process tends to consume a large amount of computing power and it might not be affordable in real-time; 2). Existing motion planning and control algorithms might not be easily adapted to suit various types of AGVs. To overcome the aforementioned issues, we present an idea of utilizing the recurrent deep neural network (RDNN) for planning optimal parking maneuver trajectories and an adaptive learning NN-based (ALNN) control scheme for robust trajectory tracking. In addition, by introducing two transfer learning strategies, the proposed RDNN motion planner can be adapted to suit different AGVs. In our follow-up research, we will explore the possibility of extending the developed methodology for large-scale AGV parking systems collaboratively operating in a more complex cluttered environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
C7_完成签到 ,获得积分10
刚刚
Lowe完成签到,获得积分10
1秒前
2秒前
飘逸数据线完成签到,获得积分10
2秒前
4秒前
tsntn完成签到,获得积分10
4秒前
5秒前
weilucking完成签到,获得积分10
7秒前
7秒前
7秒前
嗯嗯嗯发布了新的文献求助10
8秒前
anders完成签到 ,获得积分10
8秒前
脑洞疼应助梁皓然采纳,获得10
8秒前
曹骏轩发布了新的文献求助10
10秒前
梦灵发布了新的文献求助10
10秒前
zyj发布了新的文献求助10
10秒前
11秒前
研友_ngJQzL发布了新的文献求助10
12秒前
Jasper应助bluesea采纳,获得100
14秒前
科研废物完成签到 ,获得积分10
15秒前
田茂青发布了新的文献求助10
16秒前
高兴的彩虹完成签到,获得积分10
16秒前
英俊绿柏应助lkk采纳,获得10
16秒前
22222发布了新的文献求助10
17秒前
阔达凝天完成签到 ,获得积分10
18秒前
Ccccn完成签到,获得积分10
18秒前
WPY完成签到,获得积分10
20秒前
研友_ngJQzL完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
22秒前
JamesPei应助Hayat采纳,获得20
24秒前
怡然小蚂蚁完成签到 ,获得积分10
24秒前
冷酷愚志完成签到,获得积分10
27秒前
28秒前
28秒前
29秒前
xiaozhao发布了新的文献求助10
29秒前
白兔发布了新的文献求助20
30秒前
30秒前
30秒前
田茂青完成签到,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958130
求助须知:如何正确求助?哪些是违规求助? 3504312
关于积分的说明 11117892
捐赠科研通 3235623
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547