Deep Learning-Based Trajectory Planning and Control for Autonomous Ground Vehicle Parking Maneuver

弹道 控制器(灌溉) 规划师 计算机科学 运动规划 人工神经网络 控制工程 车辆动力学 钥匙(锁) 人工智能 控制理论(社会学) 控制(管理) 工程类 机器人 生物 汽车工程 物理 天文 计算机安全 农学
作者
Runqi Chai,Derong Liu,Tianhao Liu,Antonios Tsourdos,Yuanqing Xia,Senchun Chai
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 1633-1647 被引量:68
标识
DOI:10.1109/tase.2022.3183610
摘要

In this paper, a novel integrated real-time trajectory planning and tracking control framework capable of dealing with autonomous ground vehicle (AGV) parking maneuver problems is presented. In the motion planning component, a newly-proposed idea of utilizing deep neural networks (DNNs) for approximating optimal parking trajectories is further extended by taking advantages of a recurrent network structure. The main aim is to fully exploit the inherent relationships between different vehicle states in the training process. Furthermore, two transfer learning strategies are applied such that the developed motion planner can be adapted to suit various AGVs. In order to follow the planned maneuver trajectory, an adaptive learning tracking control algorithm is designed and served as the motion controller. By adapting the network parameters, the stability of the proposed control scheme, along with the convergence of tracking errors, can be theoretically guaranteed. In order to validate the effectiveness and emphasize key features of our proposal, a number of experimental studies and comparative analysis were executed. The obtained results reveal that the proposed strategy can enable the AGV to fulfill the parking mission with enhanced motion planning and control performance. Note to Practitioners —This article was motivated by the problem of optimal automatic parking planning and tracking control for autonomous ground vehicles (AGVs) maneuvering in a restricted environment (e.g., constrained parking regions). A number of challenges may arise when dealing with this problem (e.g., the model uncertainties involved in the vehicle dynamics, system variable limits, and the presence of external disturbances). Existing approaches to address such a problem usually exploit the merit of optimization-based planning/control techniques such as model predictive control and dynamic programming in order for an optimal solution. However, two practical issues may require further considerations: 1). The nonlinear (re)optimization process tends to consume a large amount of computing power and it might not be affordable in real-time; 2). Existing motion planning and control algorithms might not be easily adapted to suit various types of AGVs. To overcome the aforementioned issues, we present an idea of utilizing the recurrent deep neural network (RDNN) for planning optimal parking maneuver trajectories and an adaptive learning NN-based (ALNN) control scheme for robust trajectory tracking. In addition, by introducing two transfer learning strategies, the proposed RDNN motion planner can be adapted to suit different AGVs. In our follow-up research, we will explore the possibility of extending the developed methodology for large-scale AGV parking systems collaboratively operating in a more complex cluttered environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助藏獒采纳,获得10
刚刚
刚刚
Jasper应助z落水无痕采纳,获得10
1秒前
健忘丹珍发布了新的文献求助10
1秒前
无花果应助Oui采纳,获得10
1秒前
2秒前
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
坦率的乐蕊完成签到 ,获得积分10
4秒前
4秒前
慕青应助科研通管家采纳,获得10
4秒前
杨琪应助科研通管家采纳,获得10
4秒前
不配.应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
wanci应助科研通管家采纳,获得10
5秒前
江秋白发布了新的文献求助30
5秒前
5秒前
yg发布了新的文献求助10
6秒前
zzz完成签到,获得积分10
7秒前
Venchii关注了科研通微信公众号
7秒前
7秒前
陈军应助ured采纳,获得20
7秒前
Jasper应助lqy采纳,获得10
8秒前
8秒前
8秒前
开朗断秋完成签到,获得积分20
8秒前
八一小波发布了新的文献求助10
9秒前
铲一口美羊羊给铲一口美羊羊的求助进行了留言
9秒前
WNL完成签到,获得积分10
9秒前
虚幻的涵柏完成签到,获得积分10
9秒前
严怜梦完成签到 ,获得积分10
9秒前
一口吃三个月亮完成签到,获得积分10
9秒前
feng完成签到,获得积分10
11秒前
左棠发布了新的文献求助10
11秒前
Oui发布了新的文献求助10
12秒前
田様应助正直博涛采纳,获得10
12秒前
高分求助中
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3127556
求助须知:如何正确求助?哪些是违规求助? 2778349
关于积分的说明 7739103
捐赠科研通 2433687
什么是DOI,文献DOI怎么找? 1293022
科研通“疑难数据库(出版商)”最低求助积分说明 623136
版权声明 600489