Accelerating Spatial Autocorrelation Computation with Parallelization, Vectorization and Memory Access Optimization: With a focus on rapid recalculation of COVID related spatial statistics for faster geospatial analysis and response

加速 计算机科学 并行计算 空间分析 SIMD公司 地理空间分析 自相关 GPU群集 库达 计算科学 数学 统计 地图学 地理
作者
Anmol Paudel,Satish Puri
标识
DOI:10.1109/ccgrid54584.2022.00064
摘要

Geographic information systems deal with spatial data and its analysis. Spatial data contains many attributes with location information. Spatial autocorrelation is a fundamental concept in spatial analysis. It suggests that similar objects tend to cluster in geographic space. Hotspots, an example of autocorrelation, are statistically significant clusters of spatial data. Other autocorrelation measures like Moran's I are used to quantify spatial dependence. Large scale spatial autocorrelation methods are compute-intensive. Fast methods for hotspots detection and analysis are crucial in recent times of COVID-19 pandemic. Therefore, we have developed parallelization methods on heterogeneous CPU and GPU environments. To the best of our knowledge, this is the first GPU and SIMD-based design and implementation of autocorrelation kernels. Earlier methods in literature intro-duced cluster-based and Map Reduce-based parallelization. We have used Intrinsics to exploit SIMD parallelism on x86 CPU architecture. We have used MPI Graph Topology to minimize inter- process communication. Our benchmarks for CPU/GPU optimizations gain upto 750X relative speedup with a 8 GPU setup when compared to baseline sequential implementation. Compared to the best implementation using OpenMP + R-tree data structure on a single compute node, our accelerated hotspots benchmark gains a 25X speedup. For real world US counties and COVID data evolution calculated over 500 days, we gain upto 110X speedup reducing time from 33 minutes to 0.3 minutes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠檬完成签到 ,获得积分10
1秒前
胡平完成签到,获得积分10
3秒前
Orange应助超帅蓝血采纳,获得10
5秒前
健忘的绿草完成签到,获得积分20
9秒前
l37u2n发布了新的文献求助10
10秒前
月满西楼完成签到,获得积分10
11秒前
12秒前
14秒前
WizBLue完成签到,获得积分10
15秒前
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
WizBLue发布了新的文献求助10
19秒前
20秒前
l37u2n完成签到,获得积分10
22秒前
超帅蓝血发布了新的文献求助10
23秒前
Jiangzhibing发布了新的文献求助10
26秒前
杳鸢应助牛牛采纳,获得10
26秒前
30秒前
不着四六的岁月完成签到,获得积分10
31秒前
33秒前
不知道完成签到,获得积分10
34秒前
隐形曼青应助Jiangzhibing采纳,获得10
35秒前
正常兔子应助Jiangzhibing采纳,获得50
35秒前
SYLH应助ZhuYJ采纳,获得10
35秒前
吨吨驳回了华仔应助
37秒前
伶俐的不尤完成签到,获得积分10
38秒前
38秒前
传奇3应助hcmsaobang2001采纳,获得10
38秒前
mengwensi完成签到,获得积分10
39秒前
feifeizi完成签到,获得积分10
40秒前
Vicky完成签到 ,获得积分10
42秒前
顾矜应助feifeizi采纳,获得10
44秒前
nebula应助Superg采纳,获得10
45秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951007
求助须知:如何正确求助?哪些是违规求助? 3496402
关于积分的说明 11081862
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 801003