Accelerating Spatial Autocorrelation Computation with Parallelization, Vectorization and Memory Access Optimization: With a focus on rapid recalculation of COVID related spatial statistics for faster geospatial analysis and response

加速 计算机科学 并行计算 空间分析 SIMD公司 地理空间分析 自相关 GPU群集 库达 计算科学 数学 统计 地图学 地理
作者
Anmol Paudel,Satish Puri
标识
DOI:10.1109/ccgrid54584.2022.00064
摘要

Geographic information systems deal with spatial data and its analysis. Spatial data contains many attributes with location information. Spatial autocorrelation is a fundamental concept in spatial analysis. It suggests that similar objects tend to cluster in geographic space. Hotspots, an example of autocorrelation, are statistically significant clusters of spatial data. Other autocorrelation measures like Moran's I are used to quantify spatial dependence. Large scale spatial autocorrelation methods are compute-intensive. Fast methods for hotspots detection and analysis are crucial in recent times of COVID-19 pandemic. Therefore, we have developed parallelization methods on heterogeneous CPU and GPU environments. To the best of our knowledge, this is the first GPU and SIMD-based design and implementation of autocorrelation kernels. Earlier methods in literature intro-duced cluster-based and Map Reduce-based parallelization. We have used Intrinsics to exploit SIMD parallelism on x86 CPU architecture. We have used MPI Graph Topology to minimize inter- process communication. Our benchmarks for CPU/GPU optimizations gain upto 750X relative speedup with a 8 GPU setup when compared to baseline sequential implementation. Compared to the best implementation using OpenMP + R-tree data structure on a single compute node, our accelerated hotspots benchmark gains a 25X speedup. For real world US counties and COVID data evolution calculated over 500 days, we gain upto 110X speedup reducing time from 33 minutes to 0.3 minutes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小富婆发布了新的文献求助10
1秒前
疾风知劲草完成签到,获得积分10
1秒前
XXXX完成签到,获得积分10
2秒前
自然剑完成签到,获得积分20
2秒前
脑洞疼应助moyu123采纳,获得10
3秒前
红日阳光发布了新的文献求助10
3秒前
小蘑菇应助小玲子采纳,获得10
3秒前
4秒前
5秒前
在水一方应助受伤海秋采纳,获得10
6秒前
完美世界应助自然剑采纳,获得10
6秒前
6秒前
共享精神应助迷路的猎豹采纳,获得10
7秒前
7秒前
8秒前
8秒前
小何发布了新的文献求助10
9秒前
科技hiu个完成签到 ,获得积分10
9秒前
10秒前
科目三应助sqq采纳,获得10
10秒前
orixero应助霏冉采纳,获得10
11秒前
哈哈镜阿姐应助海蓝云天采纳,获得10
11秒前
闪闪的清炎完成签到,获得积分20
11秒前
12秒前
fengmian发布了新的文献求助10
12秒前
12秒前
chenxin完成签到 ,获得积分10
12秒前
14秒前
清脆的水蜜桃完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
16秒前
17秒前
17秒前
FYD发布了新的文献求助10
17秒前
ksx完成签到,获得积分10
17秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642264
求助须知:如何正确求助?哪些是违规求助? 4758561
关于积分的说明 15017114
捐赠科研通 4800890
什么是DOI,文献DOI怎么找? 2566214
邀请新用户注册赠送积分活动 1524333
关于科研通互助平台的介绍 1483913