Neural network multi-component gas mixture analysis with broadband dual-frequency comb absorption spectroscopy

宽带 吸收(声学) 光谱学 组分(热力学) 干扰(通信) 吸收光谱法 计算机科学 甲烷 独立成分分析 人工神经网络 材料科学 人工智能 光学 电信 化学 物理 热力学 频道(广播) 量子力学 有机化学
作者
Linbo Tian,Jinbao Xia,A.A. Kolomenskii,H. A. Schuessler,Feng Zhu,Yanfeng Li,Jingliang He,Qian Dong,Sasa Zhang
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-1856977/v1
摘要

Abstract The cross interference of gas species in absorption spectroscopy is one of the most challenging obstacles for the analysis of multi-component gas mixtures with overlapping absorption features (blended spectra). We propose a multi-component gas mixture sensor combining a broadband absorption spectrum acquisition with a spectrum analysis algorithm. The sensor features a mid-infrared dual-frequency comb laser source enabling sensitive measurements in a broad spectral interval combined with a deep learning algorithm for spectral analysis to accurately identify the species and retrieve the concentrations of the gas components in the mixture. The sensor is tested with gas mixtures of three common gas species, namely methane, acetone and water vapor. The architecture tuning and model training are achieved by a physics-informed augmented dataset. The proposed spectral analysis model is evaluated firstly by comparison with two other state-of-the-art neural network algorithms (2L-ARNN and 1D-CNN). The performance of the complete sensor is then assessed by real-time measurements in realistic detection scenarios. In addition, we systematically analyzed and presented explicit visualizations explaining the inner working mechanism of the considered algorithms. The high performance of the proposed sensor suggests that it is feasible to realize schemes for more general gas mixture analysis by integrating broadband optical sensing and deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lllll完成签到,获得积分10
1秒前
2秒前
快乐马发布了新的文献求助10
3秒前
YORLAN完成签到 ,获得积分10
4秒前
6秒前
wying发布了新的文献求助30
6秒前
光亮远航完成签到 ,获得积分10
7秒前
9秒前
Olivia发布了新的文献求助20
11秒前
AnnChen发布了新的文献求助10
11秒前
11秒前
超级灰狼完成签到 ,获得积分10
11秒前
彭于晏应助朵朵采纳,获得30
14秒前
15秒前
传统的钧完成签到,获得积分10
17秒前
Hello应助wying采纳,获得30
18秒前
佳佳应助好久不见采纳,获得10
18秒前
19秒前
19秒前
苏苏苏发布了新的文献求助10
20秒前
20秒前
天宝完成签到,获得积分10
21秒前
医学的记忆完成签到,获得积分20
22秒前
xr发布了新的文献求助10
23秒前
大方的菠萝完成签到 ,获得积分10
23秒前
乐乐应助科研通管家采纳,获得10
24秒前
24秒前
夕诙应助科研通管家采纳,获得20
24秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
ED应助科研通管家采纳,获得10
24秒前
搜集达人应助科研通管家采纳,获得10
24秒前
烟花应助科研通管家采纳,获得10
24秒前
24秒前
orixero应助科研通管家采纳,获得10
24秒前
朵朵发布了新的文献求助30
24秒前
ED应助科研通管家采纳,获得10
24秒前
24秒前
大个应助liuzengzhang666采纳,获得10
24秒前
linggaga完成签到,获得积分10
25秒前
Silvanorio完成签到,获得积分10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966201
求助须知:如何正确求助?哪些是违规求助? 3511622
关于积分的说明 11158995
捐赠科研通 3246241
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343