清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

FBMSNet: A Filter-Bank Multi-Scale Convolutional Neural Network for EEG-Based Motor Imagery Decoding

计算机科学 过滤器组 卷积神经网络 解码方法 人工智能 模式识别(心理学) 脑-机接口 运动表象 深度学习 特征提取 脑电图 滤波器(信号处理) 语音识别 计算机视觉 算法 精神科 心理学
作者
Ke Liu,Mingzhao Yang,Zhuliang Yu,Guoyin Wang,Wei Wu
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:70 (2): 436-445 被引量:50
标识
DOI:10.1109/tbme.2022.3193277
摘要

Object: Motor imagery (MI) is a mental process widely utilized as the experimental paradigm for brain-computer interfaces (BCIs) across a broad range of basic science and clinical studies. However, decoding intentions from MI remains challenging due to the inherent complexity of brain patterns relative to the small sample size available for machine learning. Approach: This paper proposes an end-to-end Filter-Bank Multiscale Convolutional Neural Network (FBMSNet) for MI classification. A filter bank is first employed to derive a multiview spectral representation of the EEG data. Mixed depthwise convolution is then applied to extract temporal features at multiple scales, followed by spatial filtering to mitigate volume conduction. Finally, with the joint supervision of cross-entropy and center loss, FBMSNet obtains features that maximize interclass dispersion and intraclass compactness. Main results: We compare FBMSNet with several state-of-the-art EEG decoding methods on two MI datasets: the BCI Competition IV 2a dataset and the OpenBMI dataset. FBMSNet significantly outperforms the benchmark methods by achieving 79.17% and 70.05% for four-class and two-class hold-out classification accuracy, respectively. Significance: These results demonstrate the efficacy of FBMSNet in improving EEG decoding performance toward more robust BCI applications. The FBMSNet source code is available at https://github.com/Want2Vanish/FBMSNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
卷卷心发布了新的文献求助30
5秒前
瘦瘦发布了新的文献求助20
9秒前
zzgpku完成签到,获得积分0
10秒前
红茸茸羊完成签到 ,获得积分10
11秒前
666完成签到 ,获得积分0
30秒前
王多肉完成签到,获得积分10
33秒前
Lillianzhu1完成签到,获得积分10
36秒前
222完成签到,获得积分10
57秒前
yzhilson完成签到 ,获得积分10
1分钟前
可爱的函函应助瘦瘦采纳,获得10
1分钟前
zijingsy完成签到 ,获得积分10
1分钟前
ECHO完成签到,获得积分10
1分钟前
小王完成签到 ,获得积分10
1分钟前
clock完成签到 ,获得积分10
2分钟前
jin完成签到,获得积分10
2分钟前
ChatGPT完成签到,获得积分10
2分钟前
栗荔完成签到 ,获得积分10
2分钟前
2分钟前
calphen完成签到 ,获得积分10
2分钟前
tan完成签到,获得积分10
2分钟前
mzhang2完成签到 ,获得积分10
2分钟前
深情安青应助tan采纳,获得20
3分钟前
huangzsdy完成签到,获得积分10
3分钟前
zpc猪猪完成签到,获得积分10
3分钟前
3分钟前
eryday0完成签到 ,获得积分10
3分钟前
林利芳完成签到 ,获得积分0
3分钟前
cqmuluo完成签到 ,获得积分20
3分钟前
蝎子莱莱xth完成签到,获得积分10
4分钟前
yinlao完成签到,获得积分10
4分钟前
4分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
4分钟前
Square完成签到,获得积分10
4分钟前
在水一方应助Rayoo采纳,获得10
4分钟前
gavin完成签到 ,获得积分10
4分钟前
打打应助CY采纳,获得30
4分钟前
红箭烟雨完成签到,获得积分10
4分钟前
TEY完成签到 ,获得积分10
4分钟前
陌上之心完成签到 ,获得积分10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495262
关于积分的说明 11076012
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783275
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839