间充质干细胞
脚手架
化学
归巢(生物学)
数据库管理
细胞生物学
脱钙骨基质
炎症
骨愈合
生物医学工程
免疫学
解剖
材料科学
医学
生物
放大器
光电子学
CMOS芯片
生态学
作者
Dongdong Yao,Yonggang Lv
出处
期刊:Biomaterials advances
日期:2022-08-01
卷期号:139: 213036-213036
被引量:3
标识
DOI:10.1016/j.bioadv.2022.213036
摘要
The dialogue between host macrophages (Mφs) and endogenous mesenchymal stem cells (MSCs) promotes M2 Mφs polarization to resolve early-stage inflammation, thereby effectively guiding in situ bone regeneration. Once inflammation is unresolved/incontrollable, it will induce the impediment of MSCs homing at bone defect site, implying the seasonable resolution of inflammation in balancing bone homeostasis. Repeatedly, evidence elucidated that specialized pro-resolving mediators (SPMs) could conduce to proper resolve inflammation and promote the repairing of bone defect. A difunctional demineralized bone matrix (DBM) scaffold co-modified by maresin 1 (MaR1) and aptamer 19S (Apt19S) was fabricated to facilitate the osteogenesis of MSCs. To confirm the osteogenesis and immunomodulatory role of the difunctional DBM scaffold, the proliferation, recruitment, and osteogenic differentiation of MSCs and the Mφs M2 subtype polarization were evaluated in vitro. Then, the DBM scaffolds were implanted into mice model with critical size calvarial defect to evaluate bone repair efficiency. Finally, the specific resolution mechanism in Mφs cultured on the difunctional DBM scaffold was further in-depth investigated. This difunctional DBM scaffold exhibited an enhanced function on the recruitment, proliferation, migration, osteogenesis of MSCs and the resolution of inflammation, finally improved bone-scaffold integration. At the same time, MaR1 modified on the difunctional DBM scaffold increased the biosynthesis of 12-lipoxygenase (12-LOX) and 12S-hydroxy-eicosatetraenoic acid (12S-HETE), and also directly stimulated lipid droplets (LDs) biogenesis in Mφs, which suggested that MaR1 regulated Mφ lipid metabolism at bone repair site. Findings based on this synergy strategy demonstrated that Mφ lipid metabolism was essential in bone homeostasis, which might provide a theoretical direction for the treatment-associated application of MaR1 in inflammatory bone disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI