润湿
溶剂化
密度泛函理论
分子动力学
分子
材料科学
曲面(拓扑)
物理化学
结晶学
化学物理
化学
物理
计算化学
热力学
几何学
有机化学
数学
作者
Fabrizio Creazzo,Rangsiman Ketkaew,Kevin Sivula,Sandra Luber
标识
DOI:10.1016/j.apsusc.2022.154203
摘要
An extensive understanding of WO3 and WSe2 bulk crystalline structures and explicit solvent effects on (001)-WO3 and (100)-WSe2 facets are essential for design of efficient (photo) electrocatalysts. The atomistic level understanding of both WO3 and WSe2 bulk solids and how water solvation processes occur on WO3 and WSe2 facets are nowadays characterized by a noticeable lack of knowledge. Herein, forefront Density Functional Theory-based molecular dynamics have been conducted for assessing the role of an explicit water environment in the characterization of solid surfaces. Water at the interface and H-bonds environment, as well as WO3 and WSe2 surface activity, will be described in terms of surface wettability and interfacial water dynamics, revealing the relevance of treating explicitly liquid water and its dynamics in assessing catalytic features. We provide pieces of evidence of the hydrophobic character shown by (001)-WO3 and (100)-WSe2 facets. A preferential in-plane hydration structure of the first water layer has been detected at both (001)-WO3 and (100)-WSe2 water interface, in which the electric dipole moment of water molecules is re-oriented in a sort of 2-dimensional H-bond network. Bulk property calculations of WO3 and WSe2 are also provided.
科研通智能强力驱动
Strongly Powered by AbleSci AI