已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantifying uncertainty in multivariate quantile estimation of hydrometeorological extremes via copula: A comparison between bootstrapping and Markov chain Monte Carlo

分位数 单变量 二元分析 自举(财务) 连接词(语言学) 统计 水文气象 马尔科夫蒙特卡洛 计量经济学 多元统计 数学 蒙特卡罗方法 地理 降水 气象学
作者
Pan Yang,Tze Ling Ng
出处
期刊:International Journal of Climatology [Wiley]
卷期号:42 (9): 4621-4638 被引量:1
标识
DOI:10.1002/joc.7493
摘要

Abstract The performance of uncertainty estimation methods, namely bootstrapping and Markov chain Monte Carlo (MCMC), in univariate frequency analysis of hydrometeorological extremes has been well tested in the literature. However, the two methods have not been thoroughly compared for multivariate frequency analysis of such events. In this study, we compare the performance of bootstrapping and MCMC in estimating the uncertainty of bivariate quantiles of extremes as defined by the return period quantiles of hydrologic drought duration and severity, and concurrent meteorological drought and heat wave. Using a copula framework, we analyse the accuracy and size of confidence intervals of the bivariate quantiles, and bias in point estimates of them. We also investigate the performance of the two methods in estimating the uncertainty of univariate quantiles of the marginal distributions of the resulting bivariate copulas. This is to evaluate if any advantage of one method over the other is consistent, whether in estimating the univariate or bivariate quantiles. We conduct this study with synthetic datasets of various sample sizes and predefined distributions derived from a set of empirical data. The results show MCMC to be superior when estimating the uncertainty of bivariate quantiles where the sample size is small (~50). Where the sample size is large (~100 and ~200), the results show bootstrapping to be the better option for estimating uncertainties of bivariate quantiles. For estimating uncertainties of univariate quantiles, bootstrapping is performing better under all investigated sample sizes. Results and conclusions in this study will be beneficial for hydrometeorological risk assessment, hydrologic infrastructure design, and water resources assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助zuzu采纳,获得10
3秒前
3秒前
4秒前
无情的冰香完成签到 ,获得积分10
6秒前
朱一龙完成签到,获得积分10
6秒前
11秒前
Criminology34举报ddrose求助涉嫌违规
11秒前
阿朱完成签到 ,获得积分10
12秒前
汉堡包应助孔夫子采纳,获得10
13秒前
天天快乐应助庾稀采纳,获得10
13秒前
chengxiping发布了新的文献求助10
13秒前
13秒前
yangyangyang完成签到,获得积分10
14秒前
15秒前
JohanXu完成签到,获得积分10
16秒前
深情安青应助wd采纳,获得10
17秒前
19秒前
yyy发布了新的文献求助10
19秒前
20秒前
rainbow完成签到,获得积分10
20秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
今后应助科研通管家采纳,获得10
21秒前
今后应助科研通管家采纳,获得10
21秒前
丘比特应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得80
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
23秒前
DDL发布了新的文献求助10
24秒前
倾抚发布了新的文献求助10
25秒前
郴欧尼发布了新的文献求助10
25秒前
绾妤完成签到 ,获得积分0
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772052
求助须知:如何正确求助?哪些是违规求助? 5595492
关于积分的说明 15428899
捐赠科研通 4905183
什么是DOI,文献DOI怎么找? 2639251
邀请新用户注册赠送积分活动 1587158
关于科研通互助平台的介绍 1542040