Quantifying uncertainty in multivariate quantile estimation of hydrometeorological extremes via copula: A comparison between bootstrapping and Markov chain Monte Carlo

分位数 单变量 二元分析 自举(财务) 连接词(语言学) 统计 水文气象 马尔科夫蒙特卡洛 计量经济学 多元统计 数学 蒙特卡罗方法 地理 降水 气象学
作者
Pan Yang,Tze Ling Ng
出处
期刊:International Journal of Climatology [Wiley]
卷期号:42 (9): 4621-4638 被引量:1
标识
DOI:10.1002/joc.7493
摘要

Abstract The performance of uncertainty estimation methods, namely bootstrapping and Markov chain Monte Carlo (MCMC), in univariate frequency analysis of hydrometeorological extremes has been well tested in the literature. However, the two methods have not been thoroughly compared for multivariate frequency analysis of such events. In this study, we compare the performance of bootstrapping and MCMC in estimating the uncertainty of bivariate quantiles of extremes as defined by the return period quantiles of hydrologic drought duration and severity, and concurrent meteorological drought and heat wave. Using a copula framework, we analyse the accuracy and size of confidence intervals of the bivariate quantiles, and bias in point estimates of them. We also investigate the performance of the two methods in estimating the uncertainty of univariate quantiles of the marginal distributions of the resulting bivariate copulas. This is to evaluate if any advantage of one method over the other is consistent, whether in estimating the univariate or bivariate quantiles. We conduct this study with synthetic datasets of various sample sizes and predefined distributions derived from a set of empirical data. The results show MCMC to be superior when estimating the uncertainty of bivariate quantiles where the sample size is small (~50). Where the sample size is large (~100 and ~200), the results show bootstrapping to be the better option for estimating uncertainties of bivariate quantiles. For estimating uncertainties of univariate quantiles, bootstrapping is performing better under all investigated sample sizes. Results and conclusions in this study will be beneficial for hydrometeorological risk assessment, hydrologic infrastructure design, and water resources assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光不弱完成签到,获得积分10
1秒前
寒冷乐驹发布了新的文献求助10
2秒前
Vinny发布了新的文献求助10
2秒前
3秒前
科目三应助123采纳,获得10
3秒前
xiaowan完成签到,获得积分10
3秒前
寄草完成签到,获得积分10
3秒前
4秒前
4秒前
科研白菜白应助Apollo采纳,获得10
4秒前
Nanbaobao发布了新的文献求助10
4秒前
崔同学完成签到,获得积分10
4秒前
liubobo完成签到,获得积分0
6秒前
tlrelax发布了新的文献求助30
6秒前
刻苦熊猫发布了新的文献求助10
6秒前
万能图书馆应助聂学雨采纳,获得10
6秒前
xiaowan发布了新的文献求助10
7秒前
快乐蜗牛完成签到,获得积分10
8秒前
8秒前
8秒前
杨然完成签到,获得积分10
8秒前
10秒前
winson完成签到 ,获得积分10
11秒前
茶馆完成签到,获得积分10
12秒前
乐桉蓝完成签到,获得积分10
12秒前
12秒前
Dan发布了新的文献求助10
13秒前
典雅雅容发布了新的文献求助10
13秒前
细心冬萱完成签到,获得积分10
14秒前
14秒前
前进的光发布了新的文献求助10
14秒前
14秒前
Vinny完成签到,获得积分10
14秒前
sx应助wwl采纳,获得10
15秒前
西红柿炒番茄应助小鱼采纳,获得10
15秒前
15秒前
和谐的迎天完成签到,获得积分10
15秒前
Cynthia发布了新的文献求助10
16秒前
聂学雨完成签到,获得积分10
16秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152922
求助须知:如何正确求助?哪些是违规求助? 2804134
关于积分的说明 7857235
捐赠科研通 2461873
什么是DOI,文献DOI怎么找? 1310502
科研通“疑难数据库(出版商)”最低求助积分说明 629279
版权声明 601788