Quantifying uncertainty in multivariate quantile estimation of hydrometeorological extremes via copula: A comparison between bootstrapping and Markov chain Monte Carlo

分位数 单变量 二元分析 自举(财务) 连接词(语言学) 统计 水文气象 马尔科夫蒙特卡洛 计量经济学 多元统计 数学 蒙特卡罗方法 地理 降水 气象学
作者
Pan Yang,Tze Ling Ng
出处
期刊:International Journal of Climatology [Wiley]
卷期号:42 (9): 4621-4638 被引量:1
标识
DOI:10.1002/joc.7493
摘要

Abstract The performance of uncertainty estimation methods, namely bootstrapping and Markov chain Monte Carlo (MCMC), in univariate frequency analysis of hydrometeorological extremes has been well tested in the literature. However, the two methods have not been thoroughly compared for multivariate frequency analysis of such events. In this study, we compare the performance of bootstrapping and MCMC in estimating the uncertainty of bivariate quantiles of extremes as defined by the return period quantiles of hydrologic drought duration and severity, and concurrent meteorological drought and heat wave. Using a copula framework, we analyse the accuracy and size of confidence intervals of the bivariate quantiles, and bias in point estimates of them. We also investigate the performance of the two methods in estimating the uncertainty of univariate quantiles of the marginal distributions of the resulting bivariate copulas. This is to evaluate if any advantage of one method over the other is consistent, whether in estimating the univariate or bivariate quantiles. We conduct this study with synthetic datasets of various sample sizes and predefined distributions derived from a set of empirical data. The results show MCMC to be superior when estimating the uncertainty of bivariate quantiles where the sample size is small (~50). Where the sample size is large (~100 and ~200), the results show bootstrapping to be the better option for estimating uncertainties of bivariate quantiles. For estimating uncertainties of univariate quantiles, bootstrapping is performing better under all investigated sample sizes. Results and conclusions in this study will be beneficial for hydrometeorological risk assessment, hydrologic infrastructure design, and water resources assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
若杉完成签到 ,获得积分10
1秒前
xsk发布了新的文献求助10
1秒前
Sakura发布了新的文献求助10
1秒前
Liooo完成签到 ,获得积分10
2秒前
2秒前
傅飞风发布了新的文献求助10
2秒前
hometown发布了新的文献求助10
3秒前
3秒前
4秒前
小钱全完成签到,获得积分10
5秒前
5秒前
6秒前
婧婧发布了新的文献求助10
6秒前
zxz发布了新的文献求助10
6秒前
momo应助慢慢采纳,获得10
6秒前
北海未暖完成签到,获得积分10
6秒前
Mr发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
领导范儿应助Jonas采纳,获得10
8秒前
8秒前
9秒前
9秒前
风飞发布了新的文献求助10
9秒前
王珩安发布了新的文献求助10
9秒前
10秒前
10秒前
hometown完成签到,获得积分10
10秒前
bonnie发布了新的文献求助10
12秒前
12秒前
Aspirin发布了新的文献求助10
13秒前
pineapple发布了新的文献求助30
13秒前
含蓄绿兰发布了新的文献求助10
13秒前
Hello应助zxz采纳,获得30
14秒前
Mr完成签到,获得积分20
14秒前
14秒前
14秒前
华仔应助二十五采纳,获得10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002