Automated Segmentation of Kidney Cortex and Medulla in CT Images: A Multisite Evaluation Study

分割 计算机科学 肾移植 人工智能 卷积神经网络 肾皮质 皮质(解剖学) 医学 模式识别(心理学) 神经科学 心理学 内科学
作者
Panagiotis Korfiatis,Aleksandar Đenić,Marie E. Edwards,Adriana Gregory,Darryl Wright,Aidan F. Mullan,Joshua J. Augustine,Andrew D. Rule,Timothy L. Kline
出处
期刊:Journal of The American Society of Nephrology 卷期号:33 (2): 420-430 被引量:19
标识
DOI:10.1681/asn.2021030404
摘要

Significance Statement Volumetric measurements are needed to characterize kidney structural findings on CT images to evaluate and test their potential utility in clinical decision making. Deep learning can enable this task in a scalable and reliable manner. Although automated kidney segmentation has been previously explored, methods for distinguishing cortex from medulla have never been done before. In addition, automated methods are typically evaluated at a single institution, without testing generalizability and robustness across different institutions. The tool developed in this study performs at the level of human readers and could enable large diverse population studies to evaluate how kidney, cortex, and medulla volumes can be used in various clinical settings, and establish normative values at large scale. Background In kidney transplantation, a contrast CT scan is obtained in the donor candidate to detect subclinical pathology in the kidney. Recent work from the Aging Kidney Anatomy study has characterized kidney, cortex, and medulla volumes using a manual image-processing tool. However, this technique is time consuming and impractical for clinical care, and thus, these measurements are not obtained during donor evaluations. This study proposes a fully automated segmentation approach for measuring kidney, cortex, and medulla volumes. Methods A total of 1930 contrast-enhanced CT exams with reference standard manual segmentations from one institution were used to develop the algorithm. A convolutional neural network model was trained ( n =1238) and validated ( n =306), and then evaluated in a hold-out test set of reference standard segmentations ( n =386). After the initial evaluation, the algorithm was further tested on datasets originating from two external sites ( n =1226). Results The automated model was found to perform on par with manual segmentation, with errors similar to interobserver variability with manual segmentation. Compared with the reference standard, the automated approach achieved a Dice similarity metric of 0.94 (right cortex), 0.90 (right medulla), 0.94 (left cortex), and 0.90 (left medulla) in the test set. Similar performance was observed when the algorithm was applied on the two external datasets. Conclusions A fully automated approach for measuring cortex and medullary volumes in CT images of the kidneys has been established. This method may prove useful for a wide range of clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
AamirAli完成签到,获得积分10
2秒前
4秒前
5秒前
小桔青山完成签到,获得积分10
5秒前
7秒前
7秒前
wanwan应助温暖琦采纳,获得10
8秒前
8秒前
婵婵发布了新的文献求助10
10秒前
orixero应助王三采纳,获得10
10秒前
bill完成签到,获得积分10
10秒前
不如吃茶去完成签到,获得积分10
12秒前
12秒前
洛苏完成签到,获得积分10
12秒前
jzpPLA发布了新的文献求助10
12秒前
Owen应助威武爆米花采纳,获得10
13秒前
14秒前
14秒前
16秒前
果果完成签到,获得积分20
16秒前
weidongwu发布了新的文献求助10
17秒前
17秒前
张鑫发布了新的文献求助10
19秒前
yqcsyyds完成签到,获得积分10
19秒前
王三完成签到,获得积分10
20秒前
酷波er应助不如吃茶去采纳,获得10
20秒前
爱吃菠萝蜜完成签到,获得积分10
21秒前
曾经念真应助畅快的如豹采纳,获得10
21秒前
在水一方应助墙头人采纳,获得10
21秒前
王三发布了新的文献求助10
22秒前
24秒前
Lucas应助yqcsyyds采纳,获得10
25秒前
jzpPLA完成签到,获得积分10
25秒前
phil完成签到,获得积分10
25秒前
领导范儿应助研友_842M4n采纳,获得10
27秒前
Chang完成签到,获得积分10
27秒前
Adam完成签到 ,获得积分10
27秒前
LWJ发布了新的文献求助10
28秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992040
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260941
捐赠科研通 3272444
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882682
科研通“疑难数据库(出版商)”最低求助积分说明 809425