A machine learning approach for predictive warehouse design

标杆管理 数据仓库 可追溯性 计算机科学 表(数据库) 相关性(法律) 数据库 数据挖掘 数据科学 软件工程 营销 政治学 法学 业务
作者
Alessandro Tufano,Riccardo Accorsi,Riccardo Manzini
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Science+Business Media]
卷期号:119 (3-4): 2369-2392 被引量:21
标识
DOI:10.1007/s00170-021-08035-w
摘要

Abstract Warehouse management systems (WMS) track warehousing and picking operations, generating a huge volumes of data quantified in millions to billions of records. Logistic operators incur significant costs to maintain these IT systems, without actively mining the collected data to monitor their business processes, smooth the warehousing flows, and support the strategic decisions. This study explores the impact of tracing data beyond the simple traceability purpose. We aim at supporting the strategic design of a warehousing system by training classifiers that can predict the storage technology (ST), the material handling system (MHS), the storage allocation strategy (SAS), and the picking policy (PP) of a storage system. We introduce the definition of a learning table, whose attributes are benchmarking metrics applicable to any storage system. Then, we investigate how the availability of data in the warehouse management system (i.e. varying the number of attributes of the learning table) affects the accuracy of the predictions. To validate the approach, we illustrate a generalisable case study which collects data from sixteen different real companies belonging to different industrial sectors (automotive, manufacturing, food and beverage, cosmetics and publishing) and different players (distribution centres and third-party logistic providers). The benchmarking metrics are applied and used to generate learning tables with varying number of attributes. A bunch of classifiers is used to identify the crucial input data attributes in the prediction of ST, MHS, SAS, and PP. The managerial relevance of the data-driven methodology for warehouse design is showcased for 3PL providers experiencing a fast rotation of the SKUs stored in their storage systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张旭卓完成签到,获得积分10
刚刚
凡迪亚比完成签到,获得积分10
1秒前
2秒前
Lxx发布了新的文献求助10
2秒前
高万完成签到,获得积分10
2秒前
2秒前
4秒前
小王同学完成签到,获得积分10
5秒前
Ma发布了新的文献求助10
6秒前
6秒前
丘比特应助勤奋怀蕊采纳,获得10
7秒前
8秒前
认真龙猫完成签到,获得积分20
8秒前
研友_nxV4m8完成签到,获得积分10
9秒前
9秒前
11秒前
511发布了新的文献求助10
11秒前
科研通AI2S应助苏甜采纳,获得10
11秒前
Chen发布了新的文献求助30
13秒前
13秒前
14秒前
傻傻的飞珍完成签到,获得积分10
15秒前
领导范儿应助俏皮的白柏采纳,获得10
15秒前
Alan发布了新的文献求助10
15秒前
悦耳孤萍完成签到,获得积分10
17秒前
511完成签到,获得积分10
18秒前
zmd发布了新的文献求助10
18秒前
hyx发布了新的文献求助10
18秒前
巫马白亦发布了新的文献求助10
21秒前
xia完成签到,获得积分10
21秒前
21秒前
情怀应助lee采纳,获得30
23秒前
执执完成签到,获得积分10
23秒前
江姜发布了新的文献求助10
24秒前
25秒前
25秒前
扶苏发布了新的文献求助10
25秒前
雨下大了发布了新的文献求助10
25秒前
高挑的涛发布了新的文献求助10
25秒前
无私的芹应助Qwe采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952669
求助须知:如何正确求助?哪些是违规求助? 3498162
关于积分的说明 11090517
捐赠科研通 3228748
什么是DOI,文献DOI怎么找? 1785066
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801349