纳滤
界面聚合
膜
聚酰胺
生物污染
薄膜复合膜
化学工程
材料科学
海水淡化
渗透
聚合
表面能
高分子化学
反渗透
化学
聚合物
复合材料
渗透
单体
生物化学
工程类
作者
Wenwen Li,Runnan Zhang,Chao Yang,Zhen Wang,Jingyuan Guan,Yafei Li,Jianliang Shen,Yanlei Su,Zhongyi Jiang
标识
DOI:10.1016/j.memsci.2021.120166
摘要
Nanofiltration (NF) membranes with high flux and superior antifouling performance are in great demand for water purification. Low-surface-energy fluorine materials have attracted significant attention in the fabrication of antifouling nanofiltration membranes. However, their inferior water affinity usually leads to the sacrifice of membrane water permeability. Herein, we explored perfluorooctanoyl chloride (PFOC) as a reactive additive in the organic phase during support-free interfacial polymerization (IP) to engineer fluorinated polyamide (FPA) nanofilms, which were further transferred onto porous substrates for thin-film composite (TFC) membranes. PFOC can participate in the interfacial polymerization process, leading to an enlarged pore size of the FPA nanofilm. The resultant TFC membrane displayed water permeance of 28.5 ± 0.7 L m−2 h−1 bar−1, about twice as high as that of the pure polyamide (PA) membrane while maintaining Na2SO4 rejection above 98.5% and NaCl rejection below 15.0%. Moreover, the existence of low-surface-energy perfluoroalkyl chains on the FPA nanofilm surface can endow the TFC membrane with superior antifouling properties with a higher flux recovery ratio and lower flux decline ratio against oil/water emulsions (FRR = 97.9%, DRt = 9.5%) and bovine serum albumin (FRR = 98.5%, DRt = 13.9%). Our approach may enlighten a new avenue on engineering high-flux antifouling TFC membranes with fluorine materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI