Dynamic Treatment Regimes

环境科学
作者
Anastasios A. Tsiatis,Marie Davidian,Shannon T. Holloway,Eric B. Laber
出处
期刊:Chapman and Hall/CRC eBooks [Informa]
被引量:69
标识
DOI:10.1201/9780429192692
摘要

Dynamic Treatment Regimes: Statistical Methods for Precision Medicine provides a comprehensive introduction to statistical methodology for the evaluation and discovery of dynamic treatment regimes from data. Researchers and graduate students in statistics, data science, and related quantitative disciplines with a background in probability and statistical inference and popular statistical modeling techniques will be prepared for further study of this rapidly evolving field. A dynamic treatment regime is a set of sequential decision rules, each corresponding to a key decision point in a disease or disorder process, where each rule takes as input patient information and returns the treatment option he or she should receive. Thus, a treatment regime formalizes how a clinician synthesizes patient information and selects treatments in practice. Treatment regimes are of obvious relevance to precision medicine, which involves tailoring treatment selection to patient characteristics in an evidence-based way. Of critical importance to precision medicine is estimation of an optimal treatment regime, one that, if used to select treatments for the patient population, would lead to the most beneficial outcome on average. Key methods for estimation of an optimal treatment regime from data are motivated and described in detail. A dedicated companion website presents full accounts of application of the methods using a comprehensive R package developed by the authors. The authors' website www.dtr-book.com includes updates, corrections, new papers, and links to useful websites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐畅完成签到 ,获得积分10
1秒前
2秒前
老龙发布了新的文献求助10
3秒前
传奇3应助刘钊扬采纳,获得10
4秒前
小萌新完成签到,获得积分10
4秒前
咯咚发布了新的文献求助10
4秒前
4秒前
科研通AI6应助xuan采纳,获得80
5秒前
nwds发布了新的文献求助10
5秒前
5秒前
xiaoxiao关注了科研通微信公众号
5秒前
5秒前
bzlish发布了新的文献求助10
6秒前
汉堡包应助zzx采纳,获得10
6秒前
求助文献完成签到,获得积分20
7秒前
mark完成签到,获得积分10
7秒前
酷波er应助甜甜醉波采纳,获得10
8秒前
烟花应助陈志强采纳,获得10
8秒前
8秒前
洪晖阳完成签到,获得积分10
9秒前
莫筱铭发布了新的文献求助10
9秒前
momeak发布了新的文献求助10
10秒前
Akim应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
123应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
汤飞飞完成签到,获得积分10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
asdfzxcv应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
123应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
欢呼乘风应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
123应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858