Efficacy and Applications of Artificial Intelligence and Machine Learning Analyses in Total Joint Arthroplasty: A Call for Improved Reporting.

逻辑回归 医学 人口统计学的 接收机工作特性 机器学习 梅德林 人工智能 关节置换术 医学物理学 科克伦图书馆 物理疗法
作者
Evan M. Polce,K. N. Kunze,Matthew S Dooley,Nicholas Piuzzi,Friedrich Boettner,Peter K. Sculco
出处
期刊:Journal of Bone and Joint Surgery, American Volume [Journal of Bone and Joint Surgery]
卷期号:104 (9): 821-832
标识
DOI:10.2106/jbjs.21.00717
摘要

There has been a considerable increase in total joint arthroplasty (TJA) research using machine learning (ML). Therefore, the purposes of this study were to synthesize the applications and efficacies of ML reported in the TJA literature, and to assess the methodological quality of these studies.PubMed, OVID/MEDLINE, and Cochrane libraries were queried in January 2021 for articles regarding the use of ML in TJA. Study demographics, topic, primary and secondary outcomes, ML model development and testing, and model presentation and validation were recorded. The TRIPOD (Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis) guidelines were used to assess the methodological quality.Fifty-five studies were identified: 31 investigated clinical outcomes and resource utilization; 11, activity and motion surveillance; 10, imaging detection; and 3, natural language processing. For studies reporting the area under the receiver operating characteristic curve (AUC), the median AUC (and range) was 0.80 (0.60 to 0.97) among 26 clinical outcome studies, 0.99 (0.83 to 1.00) among 6 imaging-based studies, and 0.88 (0.76 to 0.98) among 3 activity and motion surveillance studies. Twelve studies compared ML to logistic regression, with 9 (75%) reporting that ML was superior. The average number of TRIPOD guidelines met was 11.5 (range: 5 to 18), with 38 (69%) meeting greater than half of the criteria. Presentation and explanation of the full model for individual predictions and assessments of model calibration were poorly reported (<30%).The performance of ML models was good to excellent when applied to a wide variety of clinically relevant outcomes in TJA. However, reporting of certain key methodological and model presentation criteria was inadequate. Despite the recent surge in TJA literature utilizing ML, the lack of consistent adherence to reporting guidelines needs to be addressed to bridge the gap between model development and clinical implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wonderbgt完成签到,获得积分0
3秒前
reset完成签到 ,获得积分10
5秒前
h41692011完成签到 ,获得积分10
8秒前
Leofar完成签到 ,获得积分10
9秒前
标致的山水完成签到 ,获得积分10
9秒前
瘦瘦的小松鼠完成签到 ,获得积分10
12秒前
Even9完成签到,获得积分10
16秒前
yhy完成签到 ,获得积分10
17秒前
牛人完成签到,获得积分10
22秒前
chhzz完成签到 ,获得积分10
23秒前
磊磊完成签到,获得积分10
24秒前
叶夜南完成签到 ,获得积分10
26秒前
小卷粉完成签到 ,获得积分10
40秒前
口布鲁完成签到,获得积分10
43秒前
vikey完成签到 ,获得积分10
52秒前
蓝眸完成签到 ,获得积分10
52秒前
无奈的邪欢完成签到,获得积分10
54秒前
ch3oh完成签到,获得积分10
58秒前
平常雨泽完成签到 ,获得积分10
59秒前
Diaory2023完成签到 ,获得积分10
1分钟前
甜蜜乐松完成签到 ,获得积分10
1分钟前
袁雪蓓完成签到 ,获得积分10
1分钟前
Hello应助Wang采纳,获得10
1分钟前
Loscipy完成签到,获得积分10
1分钟前
Micahaeler完成签到 ,获得积分10
1分钟前
白菜完成签到 ,获得积分10
1分钟前
务实青筠完成签到 ,获得积分10
1分钟前
nicolaslcq完成签到,获得积分10
1分钟前
zhouyelly完成签到,获得积分10
1分钟前
研友Bn完成签到 ,获得积分10
1分钟前
lizh187完成签到 ,获得积分10
1分钟前
杨冲完成签到 ,获得积分10
1分钟前
ken131完成签到 ,获得积分10
1分钟前
萧布完成签到,获得积分10
1分钟前
小龙发布了新的文献求助10
1分钟前
张尧摇摇摇完成签到 ,获得积分10
1分钟前
微生完成签到 ,获得积分10
2分钟前
2分钟前
小龙完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146916
求助须知:如何正确求助?哪些是违规求助? 2798171
关于积分的说明 7826798
捐赠科研通 2454724
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565