清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A hybrid parallel Harris hawks optimization algorithm for reusable launch vehicle reentry trajectory optimization with no-fly zones

人口 轨迹优化 数学优化 稳健性(进化) 差异进化 最优化问题 计算机科学 水准点(测量) 平滑的 局部最优 最优控制 数学 生物化学 化学 人口学 大地测量学 社会学 计算机视觉 基因 地理
作者
Ya Su,Ying Dai,Yi Liu
出处
期刊:Soft Computing [Springer Nature]
卷期号:25 (23): 14597-14617 被引量:16
标识
DOI:10.1007/s00500-021-06039-y
摘要

Reentry trajectory optimization is a critical optimal control problem for reusable launch vehicle (RLV) with highly nonlinear dynamic characteristics and complex constraints. In this paper, a hybrid parallel Harris hawks optimization (HPHHO) algorithm is proposed to address the problem. HPHHO aims to enhance the performance of existing Harris hawks optimization (HHO) algorithm by three strategies including oppositional learning, smoothing technique and parallel optimization mechanism. At the beginning of each iteration, the opposite population is calculated from the current population by the oppositional learning strategy. Following that, the individuals in the two populations are arranged in ascending order on the basis of the fitness function values, and the top half of the resulting population is selected as the initial population. The selected initial population is divided into two equal subpopulations which are assigned to the differential evolution and the HHO algorithm, respectively. The both algorithms operate in parallel to search and update the solutions of each subpopulation simultaneously. Then the solutions are smoothed for each iteration by the smoothing technique to reduce fluctuations. As a result, the optimal solution obtained by the parallel optimization mechanism avoids falling into local optima. The performance of HPHHO is evaluated by 4 CEC 2005 benchmark functions and 3 constrained continuous optimal control problems, showing better efficiency and robustness in terms of performance metrics, convergence rate and stability. Finally, the simulation results show that the proposed algorithm is very effective, practical and feasible in solving the RLV reentry trajectory optimization problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
hxz完成签到 ,获得积分10
40秒前
mufcyang发布了新的文献求助10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
mufcyang发布了新的文献求助10
1分钟前
陈艺杨完成签到 ,获得积分10
1分钟前
1分钟前
mufcyang发布了新的文献求助10
1分钟前
生动的迎夏完成签到,获得积分20
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
落后的乌龟完成签到,获得积分10
2分钟前
上官若男应助fhzy采纳,获得10
2分钟前
共享精神应助落后的乌龟采纳,获得10
2分钟前
3分钟前
tt完成签到,获得积分10
3分钟前
3分钟前
完美世界应助小小K采纳,获得10
3分钟前
3分钟前
葛力完成签到,获得积分10
3分钟前
3分钟前
小小K发布了新的文献求助10
3分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
OSASACB完成签到 ,获得积分10
4分钟前
傻傻的哈密瓜完成签到,获得积分10
4分钟前
4分钟前
123发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755552
求助须知:如何正确求助?哪些是违规求助? 5496349
关于积分的说明 15381307
捐赠科研通 4893541
什么是DOI,文献DOI怎么找? 2632204
邀请新用户注册赠送积分活动 1580085
关于科研通互助平台的介绍 1535939