Proteomic Discovery of Plasma Protein Biomarkers and Development of Models Predicting Prognosis of High-Grade Serous Ovarian Carcinoma

危险系数 卵巢癌 生物标志物 浆液性液体 肿瘤科 内科学 医学 卵巢癌 置信区间 蛋白质组学 接收机工作特性 癌症 生物 生物化学 基因
作者
Se Ik Kim,Suhyun Hwangbo,Kisoon Dan,Hee Seung Kim,Hyun Hoon Chung,Jae Weon Kim,Noh Hyun Park,Yong Sang Song,Dohyun Han,Maria Lee
出处
期刊:Molecular & Cellular Proteomics [Elsevier BV]
卷期号:22 (3): 100502-100502 被引量:6
标识
DOI:10.1016/j.mcpro.2023.100502
摘要

Ovarian cancer is one of the most lethal female cancers. For accurate prognosis prediction, this study aimed to investigate novel, blood-based prognostic biomarkers for high-grade serous ovarian carcinoma (HGSOC) using mass spectrometry–based proteomics methods. We conducted label-free liquid chromatography–tandem mass spectrometry using frozen plasma samples obtained from patients with newly diagnosed HGSOC (n = 20). Based on progression-free survival (PFS), the samples were divided into two groups: good (PFS ≥18 months) and poor prognosis groups (PFS <18 months). Proteomic profiles were compared between the two groups. Referring to proteomics data that we previously obtained using frozen cancer tissues from chemotherapy-naïve patients with HGSOC, overlapping protein biomarkers were selected as candidate biomarkers. Biomarkers were validated using an independent set of HGSOC plasma samples (n = 202) via enzyme-linked immunosorbent assay (ELISA). To construct models predicting the 18-month PFS rate, we performed stepwise selection based on the area under the receiver operating characteristic curve (AUC) with 5-fold cross-validation. Analysis of differentially expressed proteins in plasma samples revealed that 35 and 61 proteins were upregulated in the good and poor prognosis groups, respectively. Through hierarchical clustering and bioinformatic analyses, GSN, VCAN, SND1, SIGLEC14, CD163, and PRMT1 were selected as candidate biomarkers and were subjected to ELISA. In multivariate analysis, plasma GSN was identified as an independent poor prognostic biomarker for PFS (adjusted hazard ratio, 1.556; 95% confidence interval, 1.073–2.256; p = 0.020). By combining clinical factors and ELISA results, we constructed several models to predict the 18-month PFS rate. A model consisting of four predictors (FIGO stage, residual tumor after surgery, and plasma levels of GSN and VCAN) showed the best predictive performance (mean validated AUC, 0.779). The newly developed model was converted to a nomogram for clinical use. Our study results provided insights into protein biomarkers, which might offer clues for developing therapeutic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助肌肉干细胞采纳,获得10
刚刚
1秒前
1秒前
gg发布了新的文献求助10
2秒前
2秒前
歪比巴卜完成签到 ,获得积分10
2秒前
王才强发布了新的文献求助10
2秒前
wenbinvan完成签到,获得积分0
3秒前
欢喜的之瑶完成签到,获得积分10
4秒前
5秒前
5秒前
yx_cheng应助zhangHL采纳,获得10
5秒前
Much发布了新的文献求助10
6秒前
7秒前
upsoar发布了新的文献求助10
7秒前
怡宝1223发布了新的文献求助10
7秒前
Phil完成签到 ,获得积分10
8秒前
在途中发布了新的文献求助10
9秒前
悦耳人生完成签到 ,获得积分10
10秒前
zhaoli完成签到 ,获得积分10
10秒前
spyspy发布了新的文献求助20
11秒前
12秒前
summer发布了新的文献求助10
17秒前
17秒前
蓝胖子发布了新的文献求助10
17秒前
18秒前
18秒前
feilu完成签到,获得积分10
18秒前
19秒前
Jasper应助spyspy采纳,获得20
19秒前
21秒前
21秒前
mgh发布了新的文献求助10
22秒前
RW乾完成签到,获得积分10
22秒前
23秒前
蹦出通通完成签到,获得积分10
23秒前
小背包完成签到 ,获得积分10
24秒前
OngJi完成签到 ,获得积分10
24秒前
25秒前
JK完成签到,获得积分10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164677
捐赠科研通 3247651
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498