亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Proteomic Discovery of Plasma Protein Biomarkers and Development of Models Predicting Prognosis of High-Grade Serous Ovarian Carcinoma

危险系数 卵巢癌 生物标志物 浆液性液体 肿瘤科 内科学 医学 卵巢癌 置信区间 蛋白质组学 接收机工作特性 癌症 生物 生物化学 基因
作者
Se Ik Kim,Suhyun Hwangbo,Kisoon Dan,Hee Seung Kim,Hyun Hoon Chung,Jae Weon Kim,Noh Hyun Park,Yong Sang Song,Dohyun Han,Maria Lee
出处
期刊:Molecular & Cellular Proteomics [Elsevier]
卷期号:22 (3): 100502-100502 被引量:6
标识
DOI:10.1016/j.mcpro.2023.100502
摘要

Ovarian cancer is one of the most lethal female cancers. For accurate prognosis prediction, this study aimed to investigate novel, blood-based prognostic biomarkers for high-grade serous ovarian carcinoma (HGSOC) using mass spectrometry–based proteomics methods. We conducted label-free liquid chromatography–tandem mass spectrometry using frozen plasma samples obtained from patients with newly diagnosed HGSOC (n = 20). Based on progression-free survival (PFS), the samples were divided into two groups: good (PFS ≥18 months) and poor prognosis groups (PFS <18 months). Proteomic profiles were compared between the two groups. Referring to proteomics data that we previously obtained using frozen cancer tissues from chemotherapy-naïve patients with HGSOC, overlapping protein biomarkers were selected as candidate biomarkers. Biomarkers were validated using an independent set of HGSOC plasma samples (n = 202) via enzyme-linked immunosorbent assay (ELISA). To construct models predicting the 18-month PFS rate, we performed stepwise selection based on the area under the receiver operating characteristic curve (AUC) with 5-fold cross-validation. Analysis of differentially expressed proteins in plasma samples revealed that 35 and 61 proteins were upregulated in the good and poor prognosis groups, respectively. Through hierarchical clustering and bioinformatic analyses, GSN, VCAN, SND1, SIGLEC14, CD163, and PRMT1 were selected as candidate biomarkers and were subjected to ELISA. In multivariate analysis, plasma GSN was identified as an independent poor prognostic biomarker for PFS (adjusted hazard ratio, 1.556; 95% confidence interval, 1.073–2.256; p = 0.020). By combining clinical factors and ELISA results, we constructed several models to predict the 18-month PFS rate. A model consisting of four predictors (FIGO stage, residual tumor after surgery, and plasma levels of GSN and VCAN) showed the best predictive performance (mean validated AUC, 0.779). The newly developed model was converted to a nomogram for clinical use. Our study results provided insights into protein biomarkers, which might offer clues for developing therapeutic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
aa111发布了新的文献求助10
6秒前
完美世界应助aa111采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
maher应助科研通管家采纳,获得30
22秒前
ZYP应助科研通管家采纳,获得10
22秒前
35秒前
科研启动发布了新的文献求助30
42秒前
47秒前
酷波er应助yahaahaaoo采纳,获得10
53秒前
科研启动完成签到,获得积分10
1分钟前
科研通AI6应助xxx采纳,获得10
1分钟前
自信号厂完成签到 ,获得积分0
1分钟前
领导范儿应助nikuisi采纳,获得10
1分钟前
1分钟前
wew发布了新的文献求助10
1分钟前
1分钟前
朴素的山蝶完成签到 ,获得积分10
1分钟前
wangfaqing942完成签到 ,获得积分10
2分钟前
陌路人发布了新的文献求助10
2分钟前
ele_yuki完成签到,获得积分10
2分钟前
2分钟前
nikuisi发布了新的文献求助10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
mm应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
wew完成签到,获得积分20
2分钟前
2分钟前
yahaahaaoo发布了新的文献求助10
2分钟前
yahaahaaoo完成签到,获得积分10
2分钟前
山与完成签到,获得积分20
3分钟前
CATH完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463313
求助须知:如何正确求助?哪些是违规求助? 4568049
关于积分的说明 14312357
捐赠科研通 4493975
什么是DOI,文献DOI怎么找? 2462050
邀请新用户注册赠送积分活动 1450987
关于科研通互助平台的介绍 1426221