Proteomic Discovery of Plasma Protein Biomarkers and Development of Models Predicting Prognosis of High-Grade Serous Ovarian Carcinoma

危险系数 卵巢癌 生物标志物 浆液性液体 肿瘤科 内科学 医学 卵巢癌 置信区间 蛋白质组学 接收机工作特性 癌症 生物 生物化学 基因
作者
Se Ik Kim,Suhyun Hwangbo,Kisoon Dan,Hee Seung Kim,Hyun Hoon Chung,Jae Weon Kim,Noh Hyun Park,Yong Sang Song,Dohyun Han,Maria Lee
出处
期刊:Molecular & Cellular Proteomics [Elsevier]
卷期号:22 (3): 100502-100502 被引量:6
标识
DOI:10.1016/j.mcpro.2023.100502
摘要

Ovarian cancer is one of the most lethal female cancers. For accurate prognosis prediction, this study aimed to investigate novel, blood-based prognostic biomarkers for high-grade serous ovarian carcinoma (HGSOC) using mass spectrometry–based proteomics methods. We conducted label-free liquid chromatography–tandem mass spectrometry using frozen plasma samples obtained from patients with newly diagnosed HGSOC (n = 20). Based on progression-free survival (PFS), the samples were divided into two groups: good (PFS ≥18 months) and poor prognosis groups (PFS <18 months). Proteomic profiles were compared between the two groups. Referring to proteomics data that we previously obtained using frozen cancer tissues from chemotherapy-naïve patients with HGSOC, overlapping protein biomarkers were selected as candidate biomarkers. Biomarkers were validated using an independent set of HGSOC plasma samples (n = 202) via enzyme-linked immunosorbent assay (ELISA). To construct models predicting the 18-month PFS rate, we performed stepwise selection based on the area under the receiver operating characteristic curve (AUC) with 5-fold cross-validation. Analysis of differentially expressed proteins in plasma samples revealed that 35 and 61 proteins were upregulated in the good and poor prognosis groups, respectively. Through hierarchical clustering and bioinformatic analyses, GSN, VCAN, SND1, SIGLEC14, CD163, and PRMT1 were selected as candidate biomarkers and were subjected to ELISA. In multivariate analysis, plasma GSN was identified as an independent poor prognostic biomarker for PFS (adjusted hazard ratio, 1.556; 95% confidence interval, 1.073–2.256; p = 0.020). By combining clinical factors and ELISA results, we constructed several models to predict the 18-month PFS rate. A model consisting of four predictors (FIGO stage, residual tumor after surgery, and plasma levels of GSN and VCAN) showed the best predictive performance (mean validated AUC, 0.779). The newly developed model was converted to a nomogram for clinical use. Our study results provided insights into protein biomarkers, which might offer clues for developing therapeutic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
LH发布了新的文献求助10
4秒前
4秒前
醉熏的初柳完成签到,获得积分10
5秒前
5秒前
7秒前
独特的完成签到,获得积分10
8秒前
qiqi完成签到 ,获得积分10
8秒前
Shuang完成签到 ,获得积分10
9秒前
10秒前
11秒前
LZM完成签到,获得积分10
11秒前
独特的发布了新的文献求助10
11秒前
666发布了新的文献求助10
11秒前
yangching完成签到,获得积分10
12秒前
王小头要查文献完成签到,获得积分10
13秒前
14秒前
DAN_完成签到,获得积分10
15秒前
cindy完成签到,获得积分10
15秒前
orixero应助卷卷采纳,获得10
16秒前
LH完成签到,获得积分20
17秒前
传奇3应助拼搏的秋玲采纳,获得10
18秒前
18秒前
21秒前
leolee完成签到 ,获得积分10
21秒前
It6发布了新的文献求助10
23秒前
ghh完成签到,获得积分20
24秒前
keyantong666完成签到,获得积分10
24秒前
猫xuan发布了新的文献求助10
25秒前
26秒前
Jenny关注了科研通微信公众号
28秒前
打打应助GaPb氘壬采纳,获得10
28秒前
31秒前
yjc发布了新的文献求助10
32秒前
小羊完成签到,获得积分10
33秒前
33秒前
34秒前
35秒前
无情的匪完成签到 ,获得积分10
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151831
求助须知:如何正确求助?哪些是违规求助? 2803210
关于积分的说明 7852429
捐赠科研通 2460582
什么是DOI,文献DOI怎么找? 1309902
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760