Symbolic Representation and Toolkit Development of Iterated Error-State Extended Kalman Filters on Manifolds

歧管(流体力学) 卡尔曼滤波器 计算机科学 扩展卡尔曼滤波器 代表(政治) 同时定位和映射 线性化 机器人 控制理论(社会学) 人工智能 移动机器人 非线性系统 工程类 控制(管理) 机械工程 政治 法学 政治学 物理 量子力学
作者
Dongjiao He,Wei Xu,Fu Zhang
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (12): 12533-12544 被引量:6
标识
DOI:10.1109/tie.2023.3237872
摘要

Error-state extended Kalman filter (ESEKF) is one of the extensively used filtering techniques in robot systems. There are many works that cast ESEKF on manifolds to improve consistency. However, most of these works are designed case by case, which makes it difficult to extend to new manifolds. In this article, we propose a generic method to formulate the iterated error-state extended Kalman filter (IESEKF) on manifolds, which aims to facilitate the deployment of IESEKF for on-manifold systems (e.g., lidar-inertial and visual-inertial systems). First, a canonical on-manifold representation of the robot system is proposed, based on which, an on-manifold IESEKF framework is formulated and solved by linearization at each estimation point. The proposed framework has two main advantages, one is that an equivalent error-state system is derived from linearization, which is minimally parameterized without any singularities in practice. And the other is that in each step of IESEKF, the manifold constraints are decoupled from the system behaviors, ultimately leading to a generic and symbolic IESEKF framework that naturally evolving on manifolds. Based on the separation of manifold constraints from the system behaviors, the on-manifold IESEKF is implemented as a toolkit in C++ packages, with which the user needs only to provide the system-specific descriptions, and then call the respective filter steps (e.g., predict, update) without dealing with any manifold constraints. The existing implementation supports full iterated Kalman filtering for versatile systems on manifold $\mathcal {M} = \mathbb {R}^{m}\!\times SO(3)\!\times \!\cdots \!\times \!SO(3)\!\times \!SE_{N}(3)\!\times \!\cdots \!\times \!SE_{N}(3)\!\times \mathbb {S}^{2} \times \cdots \times \mathbb {S}^{2}$ or any of its submanifolds, and is extendable to other types of manifold when necessary. The proposed symbolic IESEKF and the developed toolkit are verified by implementing two filter-based tightly coupled lidar-inertial navigation systems. Results show that, while greatly facilitating the EKF deployment, the developed toolkit leads to estimation performances and computation efficiency comparable to hand-engineered counterparts. Finally, the toolkit is open-sourced at https://github.com/hku-mars/IKFoM . The aimed application is the real-time state estimation of dynamic systems (e.g., robots) whose states are evolving on manifolds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT完成签到,获得积分10
1秒前
1秒前
了然完成签到 ,获得积分10
2秒前
jxp完成签到,获得积分10
2秒前
jojo完成签到 ,获得积分10
3秒前
3秒前
勤劳落雁完成签到 ,获得积分10
3秒前
6秒前
爆米花应助科研通管家采纳,获得30
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
田様应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
RC_Wang应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
赘婿应助Quzhengkai采纳,获得10
7秒前
sutharsons应助科研通管家采纳,获得30
7秒前
李爱国应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
调研昵称发布了新的文献求助10
8秒前
CodeCraft应助清新的苑博采纳,获得10
9秒前
所所应助Chen采纳,获得10
10秒前
12秒前
12秒前
goldenfleece发布了新的文献求助10
12秒前
怕黑的钥匙完成签到 ,获得积分10
12秒前
zhangsf88完成签到,获得积分10
12秒前
科研通AI5应助科研小能手采纳,获得10
12秒前
乐乐应助热情芷荷采纳,获得10
13秒前
想发sci完成签到,获得积分10
13秒前
kaifeiQi完成签到,获得积分10
13秒前
共享精神应助Elsa采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808