An Indoor Tracking Algorithm Based on Particle Filter and Nearest Neighbor Data Fusion for Wireless Sensor Networks

非视线传播 计算机科学 颗粒过滤器 多径传播 算法 无线传感器网络 k-最近邻算法 传感器融合 节点(物理) 职位(财务) 滤波器(信号处理) 无线 人工智能 计算机视觉 电信 工程类 计算机网络 频道(广播) 结构工程 财务 经济
作者
Long Cheng,Hao Zhang,Dacheng Wei,JiaBao Zhou
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (22): 5791-5791 被引量:7
标识
DOI:10.3390/rs14225791
摘要

Wireless indoor localization technology is a hot research field at present. Its basic principle is to estimate the geometric position of the mobile node by measuring the characteristic parameters of the propagation signal between the mobile node and the beacon node. However, in the process of position estimation, there are non-line-of-sight errors such as multipath propagation, which greatly reduces the localization accuracy. This paper proposes an enhanced closest neighbor data association approach based on ultra-wide band (UWB) measurement. First, the measured values were grouped to obtain a series of undetermined prediction position points, and the undetermined points were put into our set verification gate for screening. Then, the particle filter was introduced to weight and redistribute the position estimation after screening, removing the NLOS-contaminated location estimation from consideration. The position estimation group with low error was finally confirmed and weighted again by the nearest neighbor association algorithm. Simulation results showed that the average localization accuracy of the proposed method was about 1 m. Compared with the existing localization algorithms, the proposed method can successfully reduce the influence of NLOS error and obtain higher localization accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HopeStar发布了新的文献求助10
1秒前
科目三应助Hyde采纳,获得10
1秒前
追寻的山晴完成签到,获得积分10
1秒前
1秒前
muzixin发布了新的文献求助10
2秒前
周林完成签到,获得积分10
2秒前
赘婿应助薛妖怪采纳,获得10
2秒前
赵月月发布了新的文献求助10
2秒前
2秒前
Schofield发布了新的文献求助10
3秒前
3秒前
蒋蒋蒋完成签到,获得积分10
3秒前
Lucas应助lvlvlv采纳,获得10
3秒前
eejk发布了新的文献求助10
3秒前
3秒前
科研通AI5应助小范采纳,获得10
3秒前
醍醐不醒完成签到,获得积分10
4秒前
SYLH应助遇见采纳,获得10
4秒前
sx666发布了新的文献求助10
5秒前
略略略完成签到,获得积分10
5秒前
gfdfg发布了新的文献求助10
5秒前
LuDs完成签到,获得积分10
5秒前
蒋蒋蒋发布了新的文献求助10
6秒前
肥大鸭完成签到,获得积分10
6秒前
ShyerC完成签到,获得积分20
7秒前
Huang发布了新的文献求助10
7秒前
7秒前
王甜甜完成签到,获得积分20
7秒前
7秒前
8秒前
8秒前
8秒前
ZoyaR完成签到,获得积分10
8秒前
张起灵完成签到,获得积分10
8秒前
殷勤的晟睿关注了科研通微信公众号
9秒前
pluto应助健壮的涑采纳,获得10
9秒前
9秒前
9秒前
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3473983
求助须知:如何正确求助?哪些是违规求助? 3066333
关于积分的说明 9098686
捐赠科研通 2757569
什么是DOI,文献DOI怎么找? 1513039
邀请新用户注册赠送积分活动 699314
科研通“疑难数据库(出版商)”最低求助积分说明 698909