Electrostatic Potential-Induced Co–N4 Active Centers in a 2D Conductive Metal–Organic Framework for High-Performance Lithium–Sulfur Batteries

多硫化物 材料科学 催化作用 锂(药物) 电化学 密度泛函理论 化学工程 Atom(片上系统) 金属 导电体 纳米技术 物理化学 电极 计算化学 化学 电解质 有机化学 复合材料 计算机科学 医学 冶金 嵌入式系统 内分泌学 工程类
作者
Shaonan Gu,Shuzheng Xu,Xiao‐Yi Song,Hongda Li,Yinan Wang,Guowei Zhou,Nianxing Wang,Haixin Chang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (45): 50815-50826 被引量:33
标识
DOI:10.1021/acsami.2c13543
摘要

The use of single-atom catalysts is a promising approach to solve the issues of polysulfide shuttle and sluggish conversion chemistry in lithium-sulfur (Li-S) batteries. However, a single-atom catalyst usually contains a low content of active centers because more metal ions lead to generation of aggregation or the formation of nonatomic catalysts. Herein, a 2D conductive metal-organic framework [Co3(HITP)2] with abundant and periodic Co-N4 centers was decorated on carbon fiber paper as a functional interlayer for advanced Li-S batteries. The Co3(HITP)2-decorated interlayer exhibits a chemical anchoring effect and facilitates conversion kinetics, thus effectively restraining the polysulfide shuttle effect. Density functional theory calculations demonstrate that the Co-N4 centers in Co3(HITP)2 feature more intense electron density and more negative electrostatic potential distribution than those in the carbon matrix as the single-atom catalyst, thereby promoting the electrochemical performance due to the lower reaction Gibbs free energies and decomposition energy barriers. As a result, the optimized batteries deliver a high rate capacity of over 400 mA h g-1 at 4 C current and a satisfying capacity decay rate of 0.028% per cycle over 1000 cycles at 1 C. The designed Co3(HITP)2-decorated interlayer was used to prepare one of the most advanced Li-S batteries with excellent performance (reversible capacity of 762 mA h g-1 and 79.6% capacity retention over 500 cycles) under high-temperature conditions, implying its great potential for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
星星点灯完成签到,获得积分10
3秒前
甜美无剑应助Pluto采纳,获得30
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
子昂加加油完成签到,获得积分10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
元谷雪应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
Lx发布了新的文献求助10
4秒前
承乐应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
乐空思应助科研通管家采纳,获得30
4秒前
元谷雪应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
元谷雪应助科研通管家采纳,获得10
4秒前
4秒前
核桃应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得15
5秒前
5秒前
5秒前
5秒前
5秒前
渴望者发布了新的文献求助10
6秒前
7秒前
FightingW发布了新的文献求助10
8秒前
在水一方应助阳光采纳,获得10
8秒前
小衫生发布了新的文献求助30
8秒前
DumPling完成签到 ,获得积分10
8秒前
XIAOJU_U完成签到 ,获得积分10
9秒前
陈星发布了新的文献求助10
9秒前
凡仔发布了新的文献求助10
9秒前
10秒前
llll发布了新的文献求助10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615218
求助须知:如何正确求助?哪些是违规求助? 4700091
关于积分的说明 14906605
捐赠科研通 4741474
什么是DOI,文献DOI怎么找? 2547964
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473781