Electrostatic Potential-Induced Co–N4 Active Centers in a 2D Conductive Metal–Organic Framework for High-Performance Lithium–Sulfur Batteries

多硫化物 材料科学 催化作用 锂(药物) 电化学 密度泛函理论 化学工程 Atom(片上系统) 金属 导电体 纳米技术 物理化学 电极 计算化学 化学 电解质 有机化学 复合材料 计算机科学 医学 冶金 嵌入式系统 内分泌学 工程类
作者
Shaonan Gu,Shuzheng Xu,Xiao‐Yi Song,Hongda Li,Yinan Wang,Guowei Zhou,Nianxing Wang,Haixin Chang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (45): 50815-50826 被引量:19
标识
DOI:10.1021/acsami.2c13543
摘要

The use of single-atom catalysts is a promising approach to solve the issues of polysulfide shuttle and sluggish conversion chemistry in lithium-sulfur (Li-S) batteries. However, a single-atom catalyst usually contains a low content of active centers because more metal ions lead to generation of aggregation or the formation of nonatomic catalysts. Herein, a 2D conductive metal-organic framework [Co3(HITP)2] with abundant and periodic Co-N4 centers was decorated on carbon fiber paper as a functional interlayer for advanced Li-S batteries. The Co3(HITP)2-decorated interlayer exhibits a chemical anchoring effect and facilitates conversion kinetics, thus effectively restraining the polysulfide shuttle effect. Density functional theory calculations demonstrate that the Co-N4 centers in Co3(HITP)2 feature more intense electron density and more negative electrostatic potential distribution than those in the carbon matrix as the single-atom catalyst, thereby promoting the electrochemical performance due to the lower reaction Gibbs free energies and decomposition energy barriers. As a result, the optimized batteries deliver a high rate capacity of over 400 mA h g-1 at 4 C current and a satisfying capacity decay rate of 0.028% per cycle over 1000 cycles at 1 C. The designed Co3(HITP)2-decorated interlayer was used to prepare one of the most advanced Li-S batteries with excellent performance (reversible capacity of 762 mA h g-1 and 79.6% capacity retention over 500 cycles) under high-temperature conditions, implying its great potential for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xyx发布了新的文献求助10
1秒前
何觅松发布了新的文献求助10
1秒前
1秒前
777完成签到,获得积分10
2秒前
2秒前
一二完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
xiaoyao发布了新的文献求助10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
meimei发布了新的文献求助10
5秒前
叶十八发布了新的文献求助10
6秒前
易安完成签到,获得积分10
6秒前
爱田完成签到 ,获得积分10
6秒前
领导范儿应助铠甲勇士采纳,获得10
6秒前
道为发布了新的文献求助10
6秒前
不吃葱姜完成签到,获得积分10
6秒前
jimmyhui完成签到,获得积分10
6秒前
7秒前
狂野小兔子完成签到,获得积分10
8秒前
8秒前
敏er好学发布了新的文献求助10
8秒前
9秒前
孤蚀月发布了新的文献求助10
10秒前
10秒前
小鱼同学发布了新的文献求助10
10秒前
曾经二娘发布了新的文献求助10
13秒前
健壮青丝发布了新的文献求助30
13秒前
14秒前
Xyx完成签到,获得积分10
14秒前
宁静致远完成签到,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125274
求助须知:如何正确求助?哪些是违规求助? 2775580
关于积分的说明 7727081
捐赠科研通 2431059
什么是DOI,文献DOI怎么找? 1291657
科研通“疑难数据库(出版商)”最低求助积分说明 622216
版权声明 600368