A review of critical challenges in MI-BCI: From conventional to deep learning methods

脑-机接口 计算机科学 人工智能 过度拟合 运动表象 机器学习 脑电图 深度学习 领域(数学) 学习迁移 特征提取 人工神经网络 心理学 数学 精神科 纯数学
作者
Zahra Khademi,Farideh Ebrahimi,Hussain Montazery Kordy
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:383: 109736-109736 被引量:104
标识
DOI:10.1016/j.jneumeth.2022.109736
摘要

Brain-computer interfaces (BCIs) have achieved significant success in controlling external devices through the Electroencephalogram (EEG) signal processing. BCI-based Motor Imagery (MI) system bridges brain and external devices as communication tools to control, for example, wheelchair for people with disabilities, robotic control, and exoskeleton control. This success largely depends on the machine learning (ML) approaches like deep learning (DL) models. DL algorithms provide effective and powerful models to analyze compact and complex EEG data optimally for MI-BCI applications. DL models with CNN network have revolutionized computer vision through end-to-end learning from raw data. Meanwhile, RNN networks have been able to decode EEG signals by processing sequences of time series data. However, many challenges in the MI-BCI field have affected the performance of DL models. A major challenge is the individual differences in the EEG signal of different subjects. Therefore, the model must be retrained from the scratch for each new subject, which leads to computational costs. Analyzing the EEG signals is challenging due to its low signal to noise ratio and non-stationary nature. Additionally, limited size of existence datasets can lead to overfitting which can be prevented by using transfer learning (TF) approaches. The main contributions of this study are discovering major challenges in the MI-BCI field by reviewing the state of art machine learning models and then suggesting solutions to address these challenges by focusing on feature selection, feature extraction and classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳寒安发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
负责乐安完成签到,获得积分10
1秒前
3秒前
3秒前
你能行完成签到,获得积分10
3秒前
3秒前
Denmark发布了新的文献求助10
4秒前
4秒前
狄百招完成签到,获得积分0
4秒前
许多年以后完成签到,获得积分10
4秒前
春风发布了新的文献求助10
5秒前
fuchao完成签到,获得积分20
5秒前
刘志超发布了新的文献求助10
6秒前
火星上誉完成签到 ,获得积分10
6秒前
科研辣鸡发布了新的文献求助10
6秒前
dmxhh完成签到 ,获得积分10
7秒前
7秒前
7秒前
qiu发布了新的文献求助10
7秒前
小蘑菇应助低调点小象采纳,获得10
7秒前
7秒前
小二郎应助芋泥面包采纳,获得10
8秒前
9秒前
9秒前
一滴水完成签到,获得积分10
9秒前
1233445发布了新的文献求助10
9秒前
科研之路顺利完成签到,获得积分10
10秒前
坚强的缘分完成签到,获得积分10
10秒前
guoguo发布了新的文献求助10
10秒前
10秒前
赘婿应助春风采纳,获得10
10秒前
10秒前
yunshui发布了新的文献求助10
10秒前
11秒前
ffcongee发布了新的文献求助20
12秒前
深情安青应助无辜的亦云采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790