已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A review of critical challenges in MI-BCI: From conventional to deep learning methods

脑-机接口 计算机科学 人工智能 过度拟合 运动表象 机器学习 脑电图 深度学习 领域(数学) 学习迁移 特征提取 人工神经网络 心理学 数学 精神科 纯数学
作者
Zahra Khademi,Farideh Ebrahimi,Hussain Montazery Kordy
出处
期刊:Journal of Neuroscience Methods [Elsevier BV]
卷期号:383: 109736-109736 被引量:52
标识
DOI:10.1016/j.jneumeth.2022.109736
摘要

Brain-computer interfaces (BCIs) have achieved significant success in controlling external devices through the Electroencephalogram (EEG) signal processing. BCI-based Motor Imagery (MI) system bridges brain and external devices as communication tools to control, for example, wheelchair for people with disabilities, robotic control, and exoskeleton control. This success largely depends on the machine learning (ML) approaches like deep learning (DL) models. DL algorithms provide effective and powerful models to analyze compact and complex EEG data optimally for MI-BCI applications. DL models with CNN network have revolutionized computer vision through end-to-end learning from raw data. Meanwhile, RNN networks have been able to decode EEG signals by processing sequences of time series data. However, many challenges in the MI-BCI field have affected the performance of DL models. A major challenge is the individual differences in the EEG signal of different subjects. Therefore, the model must be retrained from the scratch for each new subject, which leads to computational costs. Analyzing the EEG signals is challenging due to its low signal to noise ratio and non-stationary nature. Additionally, limited size of existence datasets can lead to overfitting which can be prevented by using transfer learning (TF) approaches. The main contributions of this study are discovering major challenges in the MI-BCI field by reviewing the state of art machine learning models and then suggesting solutions to address these challenges by focusing on feature selection, feature extraction and classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一发布了新的文献求助10
3秒前
4秒前
伊洛完成签到 ,获得积分10
4秒前
烤了那只蠢鸡完成签到,获得积分10
4秒前
6秒前
平淡雅阳完成签到,获得积分10
6秒前
pwq发布了新的文献求助10
9秒前
nini发布了新的文献求助10
9秒前
一一完成签到,获得积分10
10秒前
汉堡包应助威武小猫咪采纳,获得10
13秒前
13秒前
17秒前
菜鸡游泳发布了新的文献求助10
18秒前
SiO2完成签到 ,获得积分0
19秒前
19秒前
君寻完成签到 ,获得积分10
20秒前
20秒前
20秒前
小蘑菇应助babalababa采纳,获得10
21秒前
21秒前
22秒前
中标发布了新的文献求助10
24秒前
24秒前
24秒前
公西凝芙发布了新的文献求助10
26秒前
28秒前
29秒前
29秒前
29秒前
Royal耗子完成签到,获得积分10
31秒前
haobhaobhaob发布了新的文献求助10
32秒前
33秒前
科研通AI5应助豆豆可采纳,获得10
33秒前
34秒前
Royal耗子发布了新的文献求助10
34秒前
慕青应助诺贝尔一直讲采纳,获得30
35秒前
公西凝芙完成签到,获得积分10
35秒前
科研通AI6应助弎夜采纳,获得30
35秒前
langqi发布了新的文献求助10
36秒前
Miya发布了新的文献求助30
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542