A review of critical challenges in MI-BCI: From conventional to deep learning methods

脑-机接口 计算机科学 人工智能 过度拟合 运动表象 机器学习 脑电图 深度学习 领域(数学) 学习迁移 特征提取 人工神经网络 心理学 数学 精神科 纯数学
作者
Zahra Khademi,Farideh Ebrahimi,Hussain Montazery Kordy
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:383: 109736-109736 被引量:104
标识
DOI:10.1016/j.jneumeth.2022.109736
摘要

Brain-computer interfaces (BCIs) have achieved significant success in controlling external devices through the Electroencephalogram (EEG) signal processing. BCI-based Motor Imagery (MI) system bridges brain and external devices as communication tools to control, for example, wheelchair for people with disabilities, robotic control, and exoskeleton control. This success largely depends on the machine learning (ML) approaches like deep learning (DL) models. DL algorithms provide effective and powerful models to analyze compact and complex EEG data optimally for MI-BCI applications. DL models with CNN network have revolutionized computer vision through end-to-end learning from raw data. Meanwhile, RNN networks have been able to decode EEG signals by processing sequences of time series data. However, many challenges in the MI-BCI field have affected the performance of DL models. A major challenge is the individual differences in the EEG signal of different subjects. Therefore, the model must be retrained from the scratch for each new subject, which leads to computational costs. Analyzing the EEG signals is challenging due to its low signal to noise ratio and non-stationary nature. Additionally, limited size of existence datasets can lead to overfitting which can be prevented by using transfer learning (TF) approaches. The main contributions of this study are discovering major challenges in the MI-BCI field by reviewing the state of art machine learning models and then suggesting solutions to address these challenges by focusing on feature selection, feature extraction and classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花应助小白采纳,获得20
2秒前
4秒前
5秒前
落后的怀柔完成签到,获得积分10
5秒前
6秒前
6秒前
斯文败类应助ycg采纳,获得10
6秒前
墨尘发布了新的文献求助10
7秒前
7秒前
fuiee完成签到,获得积分10
9秒前
Jasper应助QTQ采纳,获得10
9秒前
9秒前
jorgan完成签到,获得积分10
10秒前
10秒前
江洋大盗发布了新的文献求助10
11秒前
懒虫儿坤发布了新的文献求助10
11秒前
lilili发布了新的文献求助10
12秒前
yolo完成签到,获得积分10
12秒前
VX完成签到,获得积分10
12秒前
14秒前
白华苍松发布了新的文献求助10
14秒前
BINGBING1230发布了新的文献求助10
17秒前
00完成签到,获得积分10
18秒前
19秒前
传奇3应助我问问采纳,获得10
20秒前
20秒前
传奇3应助懒虫儿坤采纳,获得10
20秒前
科研通AI6应助yolo采纳,获得10
21秒前
22秒前
氦hai发布了新的文献求助10
22秒前
22秒前
彭于晏应助伯克利芙蓉王采纳,获得10
23秒前
斯文败类应助gexiaoyang采纳,获得10
24秒前
清爽的绫完成签到,获得积分10
24秒前
26秒前
orixero应助安琦采纳,获得10
26秒前
TKTKW发布了新的文献求助10
26秒前
27秒前
杜钿湄完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537866
求助须知:如何正确求助?哪些是违规求助? 4625252
关于积分的说明 14595177
捐赠科研通 4565743
什么是DOI,文献DOI怎么找? 2502625
邀请新用户注册赠送积分活动 1481106
关于科研通互助平台的介绍 1452360