A review of critical challenges in MI-BCI: From conventional to deep learning methods

脑-机接口 计算机科学 人工智能 过度拟合 运动表象 机器学习 脑电图 深度学习 领域(数学) 学习迁移 特征提取 人工神经网络 心理学 数学 精神科 纯数学
作者
Zahra Khademi,Farideh Ebrahimi,Hussain Montazery Kordy
出处
期刊:Journal of Neuroscience Methods [Elsevier BV]
卷期号:383: 109736-109736 被引量:52
标识
DOI:10.1016/j.jneumeth.2022.109736
摘要

Brain-computer interfaces (BCIs) have achieved significant success in controlling external devices through the Electroencephalogram (EEG) signal processing. BCI-based Motor Imagery (MI) system bridges brain and external devices as communication tools to control, for example, wheelchair for people with disabilities, robotic control, and exoskeleton control. This success largely depends on the machine learning (ML) approaches like deep learning (DL) models. DL algorithms provide effective and powerful models to analyze compact and complex EEG data optimally for MI-BCI applications. DL models with CNN network have revolutionized computer vision through end-to-end learning from raw data. Meanwhile, RNN networks have been able to decode EEG signals by processing sequences of time series data. However, many challenges in the MI-BCI field have affected the performance of DL models. A major challenge is the individual differences in the EEG signal of different subjects. Therefore, the model must be retrained from the scratch for each new subject, which leads to computational costs. Analyzing the EEG signals is challenging due to its low signal to noise ratio and non-stationary nature. Additionally, limited size of existence datasets can lead to overfitting which can be prevented by using transfer learning (TF) approaches. The main contributions of this study are discovering major challenges in the MI-BCI field by reviewing the state of art machine learning models and then suggesting solutions to address these challenges by focusing on feature selection, feature extraction and classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助孤独的珩采纳,获得10
1秒前
hh完成签到,获得积分20
3秒前
pluto应助HM采纳,获得10
3秒前
hh发布了新的文献求助10
5秒前
大个应助过时的映雁采纳,获得10
7秒前
8秒前
英俊的铭应助kk采纳,获得30
10秒前
航仔完成签到,获得积分10
10秒前
11秒前
孤独的珩发布了新的文献求助10
13秒前
13秒前
13秒前
星河完成签到,获得积分10
13秒前
陳新儒发布了新的文献求助10
16秒前
彩色的电脑完成签到,获得积分10
16秒前
16秒前
我是老大应助Mannone采纳,获得10
17秒前
航仔发布了新的文献求助10
17秒前
小鸟芋圆露露完成签到 ,获得积分10
18秒前
小二郎应助可以采纳,获得10
18秒前
19秒前
杨甜心发布了新的文献求助10
19秒前
19秒前
陳新儒完成签到,获得积分10
20秒前
老肖完成签到,获得积分10
20秒前
俭朴的谷云完成签到,获得积分10
21秒前
aikeyan发布了新的文献求助10
21秒前
23秒前
24秒前
24秒前
zzk完成签到,获得积分10
24秒前
sensen发布了新的文献求助10
24秒前
早睡早起发布了新的文献求助10
25秒前
25秒前
25秒前
老肖发布了新的文献求助10
26秒前
英姑应助杨甜心采纳,获得10
26秒前
Coco发布了新的文献求助10
26秒前
科目三应助长情的世倌采纳,获得10
28秒前
ssy发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954469
求助须知:如何正确求助?哪些是违规求助? 3500461
关于积分的说明 11099572
捐赠科研通 3230989
什么是DOI,文献DOI怎么找? 1786217
邀请新用户注册赠送积分活动 869884
科研通“疑难数据库(出版商)”最低求助积分说明 801713