Multi-modal contrastive mutual learning and pseudo-label re-learning for semi-supervised medical image segmentation

分割 计算机科学 人工智能 模态(人机交互) 模式 情态动词 模式识别(心理学) 一致性(知识库) 推论 机器学习 相似性(几何) 图像分割 半监督学习 监督学习 图像(数学) 人工神经网络 社会科学 化学 社会学 高分子化学
作者
Shuo Zhang,Jiaojiao Zhang,Biao Tian,Thomas Lukasiewicz,Zhenghua Xu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:83: 102656-102656 被引量:32
标识
DOI:10.1016/j.media.2022.102656
摘要

Semi-supervised learning has a great potential in medical image segmentation tasks with a few labeled data, but most of them only consider single-modal data. The excellent characteristics of multi-modal data can improve the performance of semi-supervised segmentation for each image modality. However, a shortcoming for most existing multi-modal solutions is that as the corresponding processing models of the multi-modal data are highly coupled, multi-modal data are required not only in the training but also in the inference stages, which thus limits its usage in clinical practice. Consequently, we propose a semi-supervised contrastive mutual learning (Semi-CML) segmentation framework, where a novel area-similarity contrastive (ASC) loss leverages the cross-modal information and prediction consistency between different modalities to conduct contrastive mutual learning. Although Semi-CML can improve the segmentation performance of both modalities simultaneously, there is a performance gap between two modalities, i.e., there exists a modality whose segmentation performance is usually better than that of the other. Therefore, we further develop a soft pseudo-label re-learning (PReL) scheme to remedy this gap. We conducted experiments on two public multi-modal datasets. The results show that Semi-CML with PReL greatly outperforms the state-of-the-art semi-supervised segmentation methods and achieves a similar (and sometimes even better) performance as fully supervised segmentation methods with 100% labeled data, while reducing the cost of data annotation by 90%. We also conducted ablation studies to evaluate the effectiveness of the ASC loss and the PReL module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
柔弱天磊发布了新的文献求助10
2秒前
清客完成签到 ,获得积分10
4秒前
烁丶完成签到 ,获得积分10
5秒前
5秒前
DYP发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
bkagyin应助兴奋千兰采纳,获得10
9秒前
9秒前
Active完成签到,获得积分10
10秒前
11秒前
11秒前
DYP完成签到,获得积分10
12秒前
12秒前
sx发布了新的文献求助10
15秒前
Mr发布了新的文献求助10
15秒前
桑桑发布了新的文献求助10
15秒前
李荣杰完成签到,获得积分10
15秒前
一只特立独行的流浪猪完成签到,获得积分10
15秒前
15秒前
福同学完成签到,获得积分10
16秒前
斯文蓉完成签到,获得积分10
17秒前
Lucas应助111采纳,获得10
19秒前
19秒前
鳗鱼又槐发布了新的文献求助10
19秒前
Megan发布了新的文献求助10
19秒前
20秒前
纯真以晴完成签到,获得积分10
20秒前
21秒前
查查发布了新的文献求助30
22秒前
Vera完成签到 ,获得积分10
22秒前
王孟凡完成签到 ,获得积分10
23秒前
星辰大海应助淡淡菠萝采纳,获得10
24秒前
look发布了新的文献求助10
24秒前
26秒前
情怀应助嗯嗯嗯嗯嗯采纳,获得10
26秒前
坚强小鸽子完成签到,获得积分10
26秒前
羊羊羊完成签到 ,获得积分10
27秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140690
求助须知:如何正确求助?哪些是违规求助? 2791543
关于积分的说明 7799499
捐赠科研通 2447880
什么是DOI,文献DOI怎么找? 1302159
科研通“疑难数据库(出版商)”最低求助积分说明 626459
版权声明 601194