Multi-modal contrastive mutual learning and pseudo-label re-learning for semi-supervised medical image segmentation

分割 计算机科学 人工智能 模态(人机交互) 模式 情态动词 模式识别(心理学) 一致性(知识库) 推论 机器学习 相似性(几何) 图像分割 半监督学习 监督学习 图像(数学) 人工神经网络 社会学 化学 高分子化学 社会科学
作者
Shuo Zhang,Jiaojiao Zhang,Biao Tian,Thomas Lukasiewicz,Zhenghua Xu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:83: 102656-102656 被引量:67
标识
DOI:10.1016/j.media.2022.102656
摘要

Semi-supervised learning has a great potential in medical image segmentation tasks with a few labeled data, but most of them only consider single-modal data. The excellent characteristics of multi-modal data can improve the performance of semi-supervised segmentation for each image modality. However, a shortcoming for most existing multi-modal solutions is that as the corresponding processing models of the multi-modal data are highly coupled, multi-modal data are required not only in the training but also in the inference stages, which thus limits its usage in clinical practice. Consequently, we propose a semi-supervised contrastive mutual learning (Semi-CML) segmentation framework, where a novel area-similarity contrastive (ASC) loss leverages the cross-modal information and prediction consistency between different modalities to conduct contrastive mutual learning. Although Semi-CML can improve the segmentation performance of both modalities simultaneously, there is a performance gap between two modalities, i.e., there exists a modality whose segmentation performance is usually better than that of the other. Therefore, we further develop a soft pseudo-label re-learning (PReL) scheme to remedy this gap. We conducted experiments on two public multi-modal datasets. The results show that Semi-CML with PReL greatly outperforms the state-of-the-art semi-supervised segmentation methods and achieves a similar (and sometimes even better) performance as fully supervised segmentation methods with 100% labeled data, while reducing the cost of data annotation by 90%. We also conducted ablation studies to evaluate the effectiveness of the ASC loss and the PReL module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助大力的寻琴采纳,获得10
刚刚
风趣怜烟发布了新的文献求助10
刚刚
刚刚
小小怪发布了新的文献求助10
刚刚
以一发布了新的文献求助10
1秒前
yang111222333完成签到,获得积分20
1秒前
Richard发布了新的文献求助10
1秒前
单纯的书兰应助祝愿采纳,获得10
2秒前
端庄的访枫完成签到 ,获得积分10
3秒前
咪花嗦发布了新的文献求助10
4秒前
小鱼儿发布了新的文献求助10
4秒前
4秒前
等你完成签到,获得积分10
5秒前
打打应助zhs采纳,获得10
6秒前
传奇3应助WCheng采纳,获得10
6秒前
6秒前
aniannn发布了新的文献求助10
7秒前
hongxing liu完成签到,获得积分10
7秒前
行则将至完成签到 ,获得积分10
8秒前
优美电脑完成签到,获得积分10
9秒前
完美世界应助坚定迎天采纳,获得10
10秒前
10秒前
10秒前
yang111222333发布了新的文献求助30
12秒前
12秒前
强小强完成签到,获得积分10
12秒前
大苗完成签到,获得积分10
14秒前
upsoar发布了新的文献求助10
14秒前
16秒前
16秒前
咪花嗦完成签到,获得积分10
17秒前
zzz发布了新的文献求助10
17秒前
lanbing802完成签到,获得积分10
18秒前
田様应助坚定迎天采纳,获得10
18秒前
19秒前
WCheng发布了新的文献求助10
21秒前
小刘小刘发布了新的文献求助20
22秒前
kk发布了新的文献求助10
22秒前
jillian发布了新的文献求助10
23秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992711
求助须知:如何正确求助?哪些是违规求助? 3533584
关于积分的说明 11263072
捐赠科研通 3273260
什么是DOI,文献DOI怎么找? 1806018
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545