Multi-modal contrastive mutual learning and pseudo-label re-learning for semi-supervised medical image segmentation

分割 计算机科学 人工智能 模态(人机交互) 模式 情态动词 模式识别(心理学) 一致性(知识库) 推论 机器学习 相似性(几何) 图像分割 半监督学习 监督学习 图像(数学) 人工神经网络 社会学 化学 高分子化学 社会科学
作者
Shuo Zhang,Jiaojiao Zhang,Biao Tian,Thomas Lukasiewicz,Zhenghua Xu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:83: 102656-102656 被引量:56
标识
DOI:10.1016/j.media.2022.102656
摘要

Semi-supervised learning has a great potential in medical image segmentation tasks with a few labeled data, but most of them only consider single-modal data. The excellent characteristics of multi-modal data can improve the performance of semi-supervised segmentation for each image modality. However, a shortcoming for most existing multi-modal solutions is that as the corresponding processing models of the multi-modal data are highly coupled, multi-modal data are required not only in the training but also in the inference stages, which thus limits its usage in clinical practice. Consequently, we propose a semi-supervised contrastive mutual learning (Semi-CML) segmentation framework, where a novel area-similarity contrastive (ASC) loss leverages the cross-modal information and prediction consistency between different modalities to conduct contrastive mutual learning. Although Semi-CML can improve the segmentation performance of both modalities simultaneously, there is a performance gap between two modalities, i.e., there exists a modality whose segmentation performance is usually better than that of the other. Therefore, we further develop a soft pseudo-label re-learning (PReL) scheme to remedy this gap. We conducted experiments on two public multi-modal datasets. The results show that Semi-CML with PReL greatly outperforms the state-of-the-art semi-supervised segmentation methods and achieves a similar (and sometimes even better) performance as fully supervised segmentation methods with 100% labeled data, while reducing the cost of data annotation by 90%. We also conducted ablation studies to evaluate the effectiveness of the ASC loss and the PReL module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒的平松完成签到,获得积分10
刚刚
小马甲应助dddd采纳,获得30
1秒前
所所应助石敢当采纳,获得10
2秒前
Ywffffff发布了新的文献求助10
2秒前
3秒前
精明的中蓝完成签到,获得积分10
3秒前
文艺的鱼完成签到,获得积分10
3秒前
陈淑玲发布了新的文献求助10
3秒前
heart1zzz发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
青山发布了新的文献求助10
6秒前
南方芝麻糊完成签到 ,获得积分10
9秒前
科研通AI5应助斯文芸采纳,获得10
9秒前
精明半双发布了新的文献求助10
10秒前
Min发布了新的文献求助10
10秒前
科研通AI5应助LHL采纳,获得10
10秒前
10秒前
10秒前
sykzx发布了新的文献求助10
12秒前
万能图书馆应助Qun采纳,获得10
14秒前
14秒前
14秒前
watermelon完成签到,获得积分10
15秒前
kryptonite发布了新的文献求助10
17秒前
JT完成签到,获得积分10
17秒前
没咋了完成签到,获得积分10
17秒前
watermelon发布了新的文献求助20
18秒前
罗实完成签到 ,获得积分10
20秒前
Dannnn发布了新的文献求助10
21秒前
搜集达人应助li采纳,获得10
21秒前
华仔应助华东偏振王采纳,获得10
22秒前
22秒前
22秒前
11发布了新的文献求助10
25秒前
25秒前
www关闭了www文献求助
26秒前
27秒前
27秒前
高分求助中
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775349
求助须知:如何正确求助?哪些是违规求助? 3321018
关于积分的说明 10203117
捐赠科研通 3035869
什么是DOI,文献DOI怎么找? 1665800
邀请新用户注册赠送积分活动 797104
科研通“疑难数据库(出版商)”最低求助积分说明 757740