A production prediction method of single well in water flooding oilfield based on integrated temporal convolutional network model

含水率 超参数 生产(经济) 阶段(地层学) 水模型 水驱 喷油器 洪水(心理学) 计算机科学 石油工程 人工智能 工程类 地质学 宏观经济学 机械工程 计算化学 古生物学 经济 化学 心理治疗师 分子动力学 心理学
作者
Lei Zhang,Haiyang Dou,Tianzhi WANG,Hongliang WANG,Yi Peng,Jifeng ZHANG,Zongshang LIU,Lan Mi,Liwei JIANG
出处
期刊:Petroleum Exploration and Development [Elsevier BV]
卷期号:49 (5): 1150-1160 被引量:5
标识
DOI:10.1016/s1876-3804(22)60339-2
摘要

Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network (TCN) is proposed and verified. This method is started from data processing, the correspondence between water injectors and oil producers is determined according to the influence radius of the water injectors, the influence degree of a water injector on an oil producer in the month concerned is added as a model feature, and a Random Forest (RF) model is built to fill the dynamic data of water flooding. The single well history is divided into 4 stages according to its water cut, that is, low water cut, middle water cut, high water cut and extra-high water cut stages. In each stage, a TCN based prediction model is established, hyperparameters of the model are optimized by the Sparrow Search Algorithm (SSA). Finally, the models of the 4 stages are integrated into one whole-life model of the well for production prediction. The application of this method in Daqing Oilfield, NE China shows that: (1) Compared with conventional data processing methods, the data obtained by this processing method are more close to the actual production, and the data set obtained is more authentic and complete. (2) The TCN model has higher prediction accuracy than other 11 models such as Long Short Term Memory (LSTM). (3) Compared with the conventional full-life-cycle models, the model of integrated stages can significantly reduce the error of production prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝海湾发布了新的文献求助10
刚刚
香蕉觅云应助xzr采纳,获得30
刚刚
综述王发布了新的文献求助10
1秒前
光年发布了新的文献求助10
2秒前
CipherSage应助11采纳,获得10
2秒前
Jasper应助秦兴虎采纳,获得10
3秒前
lalafish发布了新的文献求助30
3秒前
共享精神应助小布莱克采纳,获得10
4秒前
taurielLl完成签到,获得积分10
4秒前
6秒前
6秒前
125mmD91T完成签到,获得积分10
7秒前
7秒前
Zz发布了新的文献求助10
7秒前
独特的秋发布了新的文献求助10
8秒前
may发布了新的文献求助10
8秒前
vidgers完成签到 ,获得积分10
9秒前
吃鲨鱼的小虾米完成签到,获得积分10
10秒前
juckblack发布了新的文献求助30
10秒前
瀚海发布了新的文献求助30
10秒前
ggappsong发布了新的文献求助10
10秒前
ycw123发布了新的文献求助10
10秒前
xzr完成签到,获得积分20
11秒前
猪猪hero发布了新的文献求助10
11秒前
风中的元灵完成签到,获得积分10
11秒前
huazhangchina发布了新的文献求助10
11秒前
11秒前
xzr发布了新的文献求助30
14秒前
ycw123完成签到,获得积分10
15秒前
StonesKing发布了新的文献求助10
16秒前
酷波er应助光年采纳,获得10
17秒前
代杰居然完成签到 ,获得积分10
18秒前
19秒前
乐乐应助palexander采纳,获得10
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
充电宝应助ddddd采纳,获得10
21秒前
22秒前
22秒前
FashionBoy应助虎虎采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502655
关于积分的说明 11109426
捐赠科研通 3233441
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870650
科研通“疑难数据库(出版商)”最低求助积分说明 802141