A production prediction method of single well in water flooding oilfield based on integrated temporal convolutional network model

含水率 超参数 生产(经济) 阶段(地层学) 水模型 水驱 喷油器 洪水(心理学) 计算机科学 石油工程 人工智能 工程类 地质学 宏观经济学 机械工程 计算化学 古生物学 经济 化学 心理治疗师 分子动力学 心理学
作者
Lei Zhang,Haiyang Dou,Tianzhi WANG,Hongliang WANG,Yi Peng,Jifeng ZHANG,Zongshang LIU,Lan Mi,Liwei JIANG
出处
期刊:Petroleum Exploration and Development [Elsevier BV]
卷期号:49 (5): 1150-1160 被引量:5
标识
DOI:10.1016/s1876-3804(22)60339-2
摘要

Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network (TCN) is proposed and verified. This method is started from data processing, the correspondence between water injectors and oil producers is determined according to the influence radius of the water injectors, the influence degree of a water injector on an oil producer in the month concerned is added as a model feature, and a Random Forest (RF) model is built to fill the dynamic data of water flooding. The single well history is divided into 4 stages according to its water cut, that is, low water cut, middle water cut, high water cut and extra-high water cut stages. In each stage, a TCN based prediction model is established, hyperparameters of the model are optimized by the Sparrow Search Algorithm (SSA). Finally, the models of the 4 stages are integrated into one whole-life model of the well for production prediction. The application of this method in Daqing Oilfield, NE China shows that: (1) Compared with conventional data processing methods, the data obtained by this processing method are more close to the actual production, and the data set obtained is more authentic and complete. (2) The TCN model has higher prediction accuracy than other 11 models such as Long Short Term Memory (LSTM). (3) Compared with the conventional full-life-cycle models, the model of integrated stages can significantly reduce the error of production prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
笨笨凡松完成签到,获得积分10
3秒前
香香29发布了新的文献求助10
3秒前
余其钵发布了新的文献求助10
3秒前
充电宝应助华北走地鸡采纳,获得10
4秒前
勤奋橘子发布了新的文献求助10
5秒前
眠羊发布了新的文献求助10
6秒前
Mida完成签到,获得积分10
6秒前
同频共振完成签到,获得积分10
7秒前
文学痞完成签到,获得积分10
7秒前
7秒前
wuyu完成签到,获得积分10
7秒前
英姑应助zzz627采纳,获得10
8秒前
8秒前
彭于晏应助胡豆采纳,获得10
8秒前
答辩发布了新的文献求助10
8秒前
bkagyin应助mujin采纳,获得10
9秒前
笨笨凡松发布了新的文献求助10
10秒前
pgz2280发布了新的文献求助10
10秒前
111完成签到,获得积分20
10秒前
一只小熊猫完成签到,获得积分10
10秒前
小夏完成签到,获得积分10
10秒前
11秒前
Jasper应助青梧采纳,获得10
11秒前
11秒前
12秒前
华仔应助答辩采纳,获得10
13秒前
13秒前
dwbh完成签到,获得积分10
14秒前
PSYxx完成签到,获得积分10
14秒前
14秒前
所所应助十三采纳,获得10
15秒前
15秒前
斯文败类应助迪迦采纳,获得10
15秒前
15秒前
1000x完成签到,获得积分10
16秒前
心内小白完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5028518
求助须知:如何正确求助?哪些是违规求助? 4264413
关于积分的说明 13293536
捐赠科研通 4072477
什么是DOI,文献DOI怎么找? 2227478
邀请新用户注册赠送积分活动 1235941
关于科研通互助平台的介绍 1160226