清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hyperspectral imaging with machine learning for non-destructive classification of Astragalus membranaceus var. mongholicus, Astragalus membranaceus, and similar seeds

高光谱成像 人工智能 模式识别(心理学) 支持向量机 预处理器 计算机科学 黄芪 线性判别分析 数学 机器学习 医学 替代医学 病理 中医药
作者
Yanan Xu,Weifeng Wu,Yi Chen,Tingting Zhang,Keling Tu,Yun Hao,Hailu Cao,Xuehui Dong,Qun Sun
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:13 被引量:4
标识
DOI:10.3389/fpls.2022.1031849
摘要

The roots of Astragalus membranaceus var. mongholicus (AMM) and A. membranaceus (AM) are widely used in traditional Chinese medicine. Although AMM has higher yields and accounts for a larger market share, its cultivation is fraught with challenges, including mixed germplasm resources and widespread adulteration of commercial seeds. Current methods for distinguishing Astragalus seeds from similar (SM) seeds are time-consuming, laborious, and destructive. To establish a non-destructive method, AMM, AM, and SM seeds were collected from various production areas. Machine vision and hyperspectral imaging (HSI) were used to collect morphological data and spectral data of each seed batch, which was used to establish discriminant models through various algorithms. Several preprocessing methods based on hyperspectral data were compared, including multiplicative scatter correction (MSC), standard normal variable (SNV), and first derivative (FD). Then selection methods for identifying informative features in the above data were compared, including successive projections algorithm (SPA), uninformative variable elimination (UVE), and competitive adaptive reweighted sampling (CARS). The results showed that support vector machine (SVM) modeling of machine vision data could distinguish Astragalus seeds from SM with >99% accuracy, but could not satisfactorily distinguish AMM seeds from AM. The FD-UVE-SVM model based on hyperspectral data reached 100.0% accuracy in the validation set. Another 90 seeds were tested, and the recognition accuracy was 100.0%, supporting the stability of the model. In summary, HSI data can be applied to discriminate among the seeds of AMM, AM, and SM non-destructively and with high accuracy, which can drive standardization in the Astragalus production industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zly完成签到 ,获得积分10
21秒前
爱静静应助科研通管家采纳,获得10
32秒前
爱静静应助科研通管家采纳,获得10
32秒前
爱静静应助科研通管家采纳,获得10
33秒前
爱静静应助科研通管家采纳,获得10
33秒前
yanice完成签到,获得积分10
33秒前
胡锦霞完成签到,获得积分10
36秒前
1分钟前
一杯茶发布了新的文献求助10
1分钟前
1分钟前
xiaoheshan完成签到,获得积分10
1分钟前
xiaoheshan发布了新的文献求助10
1分钟前
爱静静应助科研通管家采纳,获得20
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
慕青应助一杯茶采纳,获得10
3分钟前
清秀的怀蕊完成签到 ,获得积分10
3分钟前
3分钟前
紫熊完成签到,获得积分10
3分钟前
月儿完成签到 ,获得积分10
3分钟前
缪尔岚完成签到,获得积分10
3分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
wxx完成签到 ,获得积分10
5分钟前
小马111完成签到,获得积分10
5分钟前
小马111发布了新的文献求助10
5分钟前
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
7分钟前
winne发布了新的文献求助10
7分钟前
实力不允许完成签到 ,获得积分10
7分钟前
xanderxue完成签到,获得积分10
7分钟前
边曦完成签到 ,获得积分10
7分钟前
悦耳十三发布了新的文献求助50
8分钟前
8分钟前
8分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167202
求助须知:如何正确求助?哪些是违规求助? 2818687
关于积分的说明 7921888
捐赠科研通 2478444
什么是DOI,文献DOI怎么找? 1320323
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438