Design of double layer protective coatings: Finite element modeling and machine learning approximations

有限元法 图层(电子) 材料科学 摩擦学 缩进 模数 涂层 机械工程 算法 结构工程 计算机科学 复合材料 工程类
作者
В. И. Колесников,D. M. Pashkov,O. A. Belyak,Alexander A. Guda,S. A. Danilchenko,D. S. Manturov,Е. С. Новиков,O. V. Kudryakov,С. А. Гуда,А. В. Солдатов,И. В. Колесников
出处
期刊:Acta Astronautica [Elsevier]
卷期号:204: 869-877 被引量:17
标识
DOI:10.1016/j.actaastro.2022.11.007
摘要

Thin film-composed coatings can significantly improve the mechanical and tribological properties of spacecraft friction units. In this regard, protection by ion-plasma coatings has become one of the most used options and well-established technologies. However, design of coatings that remain effective over multiple usages, is a challenge. Improving their production requires a large number of parameters to be optimized and many verification experiments to be set up. We exploited machine learning algorithm to solve the problem of double layer coatings optimization with respect to a set of mechanical properties (hardness, Young's modulus, Poisson's ratio, and yield stress). The training dataset was constructed using the adaptive sampling algorithm and numerical simulation of indentation in ANSYS for coatings of different compositions and thicknesses. The machine learning approximation provided significant accuracy (R 2 > 0.96) in predicting the coating hardness based on the mechanical properties of its individual layers. The feature importance analysis of the Extra Trees algorithm was used to define the parts of the indentation curve that carry information about the properties of individual coating layers. We have also addressed the inverse problem of coatings design in terms of the required hardness. Our findings demonstrate that only tandem approach to the cross-validation task permitted correct estimation of error in the presence of multiple ambiguous solutions. The value of error was smaller than 0.15 GPa. Being comprehensive, the proposed methodology can be applied to design optimal multilayer coatings in terms of their mechanical properties for friction units in aviation and rocketry-astronautics. • Database of numerical nanoindentation experiments for double layered coatings. • Direct problem of predicting coating hardness from layer's parameters was solved. • Extra Trees algorithm has high performance for predicting hardness: R2 score >0.95 • Inverse problem of predicting layer's parameters from coating hardness was solved. • Tandem approach was important during the cross-validation in the inverse problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助123rgk采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
杨昌琪完成签到,获得积分20
刚刚
pengyufen发布了新的文献求助10
刚刚
英俊的擎发布了新的文献求助10
2秒前
星辰大海应助小羊采纳,获得10
2秒前
ZJX应助爱听歌采纳,获得10
2秒前
3秒前
科研通AI6应助NotToday采纳,获得10
3秒前
清浅完成签到,获得积分10
3秒前
顺利的猕猴桃完成签到 ,获得积分10
3秒前
帽子戏法完成签到 ,获得积分10
3秒前
gdsfgdf完成签到,获得积分10
4秒前
冷酷严青发布了新的文献求助10
4秒前
斯文败类应助xxt采纳,获得10
5秒前
深情安青应助Assen采纳,获得10
6秒前
wei998发布了新的文献求助10
7秒前
7秒前
7秒前
思源应助张佳军采纳,获得10
7秒前
8秒前
hhh发布了新的文献求助10
8秒前
核桃酥完成签到,获得积分10
9秒前
cqh完成签到 ,获得积分10
10秒前
Liang完成签到,获得积分10
11秒前
11秒前
11秒前
顺利的猕猴桃关注了科研通微信公众号
11秒前
科研通AI6应助123采纳,获得10
11秒前
CC完成签到,获得积分10
12秒前
12秒前
吴晓燕发布了新的文献求助10
13秒前
zhangzy发布了新的文献求助12
13秒前
13秒前
妤懿完成签到 ,获得积分10
13秒前
14秒前
研友_VZG7GZ应助花舞霓裳采纳,获得30
14秒前
15秒前
TT7发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656560
求助须知:如何正确求助?哪些是违规求助? 4804154
关于积分的说明 15076185
捐赠科研通 4814847
什么是DOI,文献DOI怎么找? 2576000
邀请新用户注册赠送积分活动 1531353
关于科研通互助平台的介绍 1489900