Design of double layer protective coatings: Finite element modeling and machine learning approximations

有限元法 图层(电子) 材料科学 摩擦学 缩进 模数 涂层 机械工程 算法 结构工程 计算机科学 复合材料 工程类
作者
В. И. Колесников,D. M. Pashkov,O. A. Belyak,Alexander A. Guda,S. A. Danilchenko,D. S. Manturov,Е. С. Новиков,O. V. Kudryakov,Sergey A. Guda,А. В. Солдатов,И. В. Колесников
出处
期刊:Acta Astronautica [Elsevier BV]
卷期号:204: 869-877 被引量:10
标识
DOI:10.1016/j.actaastro.2022.11.007
摘要

Thin film-composed coatings can significantly improve the mechanical and tribological properties of spacecraft friction units. In this regard, protection by ion-plasma coatings has become one of the most used options and well-established technologies. However, design of coatings that remain effective over multiple usages, is a challenge. Improving their production requires a large number of parameters to be optimized and many verification experiments to be set up. We exploited machine learning algorithm to solve the problem of double layer coatings optimization with respect to a set of mechanical properties (hardness, Young's modulus, Poisson's ratio, and yield stress). The training dataset was constructed using the adaptive sampling algorithm and numerical simulation of indentation in ANSYS for coatings of different compositions and thicknesses. The machine learning approximation provided significant accuracy (R 2 > 0.96) in predicting the coating hardness based on the mechanical properties of its individual layers. The feature importance analysis of the Extra Trees algorithm was used to define the parts of the indentation curve that carry information about the properties of individual coating layers. We have also addressed the inverse problem of coatings design in terms of the required hardness. Our findings demonstrate that only tandem approach to the cross-validation task permitted correct estimation of error in the presence of multiple ambiguous solutions. The value of error was smaller than 0.15 GPa. Being comprehensive, the proposed methodology can be applied to design optimal multilayer coatings in terms of their mechanical properties for friction units in aviation and rocketry-astronautics. • Database of numerical nanoindentation experiments for double layered coatings. • Direct problem of predicting coating hardness from layer's parameters was solved. • Extra Trees algorithm has high performance for predicting hardness: R2 score >0.95 • Inverse problem of predicting layer's parameters from coating hardness was solved. • Tandem approach was important during the cross-validation in the inverse problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12334完成签到,获得积分10
2秒前
lzh_022完成签到,获得积分10
2秒前
不安的夜柳完成签到,获得积分10
2秒前
CodeCraft应助hammer采纳,获得10
3秒前
clcl发布了新的文献求助30
3秒前
自由的信仰完成签到,获得积分10
4秒前
qqqqq完成签到,获得积分10
4秒前
64658应助王鹏采纳,获得10
5秒前
学术骗子小刚完成签到,获得积分0
7秒前
852应助聪慧的鹤轩采纳,获得10
7秒前
clcl完成签到,获得积分10
8秒前
Dritsw应助yunyueqixun采纳,获得10
9秒前
正在获取昵称中...完成签到,获得积分10
9秒前
称心的绿竹完成签到,获得积分10
9秒前
昊昊昊昊发布了新的文献求助10
10秒前
10秒前
正直的沛凝完成签到,获得积分10
11秒前
Gia发布了新的文献求助10
13秒前
14秒前
infinity完成签到,获得积分20
16秒前
16秒前
木鱼发布了新的文献求助10
17秒前
18秒前
19秒前
魏你大爷完成签到,获得积分10
19秒前
20秒前
20秒前
无花果应助何hyy采纳,获得10
20秒前
嘻嘻发布了新的文献求助10
21秒前
Yyy发布了新的文献求助10
21秒前
DD应助糊涂的芷天采纳,获得10
21秒前
Zx完成签到 ,获得积分10
22秒前
22秒前
Vivian发布了新的文献求助10
23秒前
26秒前
WuFen完成签到 ,获得积分10
27秒前
昊昊昊昊完成签到 ,获得积分20
27秒前
哇嘞完成签到 ,获得积分20
27秒前
HongJiang发布了新的文献求助10
27秒前
勇敢的小狗完成签到 ,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965984
求助须知:如何正确求助?哪些是违规求助? 3511325
关于积分的说明 11157405
捐赠科研通 3245882
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804286