Design of double layer protective coatings: Finite element modeling and machine learning approximations

有限元法 图层(电子) 材料科学 摩擦学 缩进 模数 涂层 机械工程 算法 结构工程 计算机科学 复合材料 工程类
作者
В. И. Колесников,D. M. Pashkov,O. A. Belyak,Alexander A. Guda,S. A. Danilchenko,D. S. Manturov,Е. С. Новиков,O. V. Kudryakov,С. А. Гуда,А. В. Солдатов,И. В. Колесников
出处
期刊:Acta Astronautica [Elsevier]
卷期号:204: 869-877 被引量:17
标识
DOI:10.1016/j.actaastro.2022.11.007
摘要

Thin film-composed coatings can significantly improve the mechanical and tribological properties of spacecraft friction units. In this regard, protection by ion-plasma coatings has become one of the most used options and well-established technologies. However, design of coatings that remain effective over multiple usages, is a challenge. Improving their production requires a large number of parameters to be optimized and many verification experiments to be set up. We exploited machine learning algorithm to solve the problem of double layer coatings optimization with respect to a set of mechanical properties (hardness, Young's modulus, Poisson's ratio, and yield stress). The training dataset was constructed using the adaptive sampling algorithm and numerical simulation of indentation in ANSYS for coatings of different compositions and thicknesses. The machine learning approximation provided significant accuracy (R 2 > 0.96) in predicting the coating hardness based on the mechanical properties of its individual layers. The feature importance analysis of the Extra Trees algorithm was used to define the parts of the indentation curve that carry information about the properties of individual coating layers. We have also addressed the inverse problem of coatings design in terms of the required hardness. Our findings demonstrate that only tandem approach to the cross-validation task permitted correct estimation of error in the presence of multiple ambiguous solutions. The value of error was smaller than 0.15 GPa. Being comprehensive, the proposed methodology can be applied to design optimal multilayer coatings in terms of their mechanical properties for friction units in aviation and rocketry-astronautics. • Database of numerical nanoindentation experiments for double layered coatings. • Direct problem of predicting coating hardness from layer's parameters was solved. • Extra Trees algorithm has high performance for predicting hardness: R2 score >0.95 • Inverse problem of predicting layer's parameters from coating hardness was solved. • Tandem approach was important during the cross-validation in the inverse problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助米唐米唐采纳,获得10
3秒前
nhnh880518发布了新的文献求助20
4秒前
橘子林完成签到,获得积分10
5秒前
科研小白完成签到,获得积分10
7秒前
7秒前
标致鹏涛完成签到,获得积分20
9秒前
许自通完成签到,获得积分10
9秒前
10秒前
123444发布了新的文献求助10
10秒前
11秒前
elerain完成签到,获得积分10
11秒前
顺其自然完成签到 ,获得积分10
11秒前
幽默的访冬完成签到,获得积分10
12秒前
王小龙完成签到,获得积分10
13秒前
T_MC郭完成签到,获得积分10
14秒前
zz发布了新的文献求助30
15秒前
零零柒完成签到 ,获得积分10
16秒前
潇洒的血茗完成签到,获得积分10
18秒前
超级的千青完成签到 ,获得积分10
19秒前
小文完成签到,获得积分10
20秒前
大脚仙完成签到,获得积分10
21秒前
羊与布克完成签到,获得积分10
22秒前
changping应助诸星大采纳,获得10
25秒前
桐桐应助北风采纳,获得10
26秒前
热情依白完成签到 ,获得积分10
27秒前
28秒前
scvrl完成签到,获得积分10
28秒前
BatFaith完成签到,获得积分10
29秒前
dfghjkl完成签到,获得积分10
29秒前
大水牛姐姐完成签到,获得积分10
29秒前
Qiancheni完成签到,获得积分10
29秒前
桐桐应助南木采纳,获得10
29秒前
32秒前
科研通AI2S应助ppxx采纳,获得10
32秒前
33秒前
33秒前
北风发布了新的文献求助10
38秒前
dadadaniu完成签到,获得积分10
38秒前
负责紊完成签到,获得积分10
39秒前
remember发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304885
求助须知:如何正确求助?哪些是违规求助? 4451091
关于积分的说明 13850915
捐赠科研通 4338444
什么是DOI,文献DOI怎么找? 2381863
邀请新用户注册赠送积分活动 1376942
关于科研通互助平台的介绍 1344399