Design of double layer protective coatings: Finite element modeling and machine learning approximations

有限元法 图层(电子) 材料科学 摩擦学 缩进 模数 涂层 机械工程 算法 结构工程 计算机科学 复合材料 工程类
作者
В. И. Колесников,D. M. Pashkov,O. A. Belyak,Alexander A. Guda,S. A. Danilchenko,D. S. Manturov,Е. С. Новиков,O. V. Kudryakov,С. А. Гуда,А. В. Солдатов,И. В. Колесников
出处
期刊:Acta Astronautica [Elsevier]
卷期号:204: 869-877 被引量:17
标识
DOI:10.1016/j.actaastro.2022.11.007
摘要

Thin film-composed coatings can significantly improve the mechanical and tribological properties of spacecraft friction units. In this regard, protection by ion-plasma coatings has become one of the most used options and well-established technologies. However, design of coatings that remain effective over multiple usages, is a challenge. Improving their production requires a large number of parameters to be optimized and many verification experiments to be set up. We exploited machine learning algorithm to solve the problem of double layer coatings optimization with respect to a set of mechanical properties (hardness, Young's modulus, Poisson's ratio, and yield stress). The training dataset was constructed using the adaptive sampling algorithm and numerical simulation of indentation in ANSYS for coatings of different compositions and thicknesses. The machine learning approximation provided significant accuracy (R 2 > 0.96) in predicting the coating hardness based on the mechanical properties of its individual layers. The feature importance analysis of the Extra Trees algorithm was used to define the parts of the indentation curve that carry information about the properties of individual coating layers. We have also addressed the inverse problem of coatings design in terms of the required hardness. Our findings demonstrate that only tandem approach to the cross-validation task permitted correct estimation of error in the presence of multiple ambiguous solutions. The value of error was smaller than 0.15 GPa. Being comprehensive, the proposed methodology can be applied to design optimal multilayer coatings in terms of their mechanical properties for friction units in aviation and rocketry-astronautics. • Database of numerical nanoindentation experiments for double layered coatings. • Direct problem of predicting coating hardness from layer's parameters was solved. • Extra Trees algorithm has high performance for predicting hardness: R2 score >0.95 • Inverse problem of predicting layer's parameters from coating hardness was solved. • Tandem approach was important during the cross-validation in the inverse problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaoyingj发布了新的文献求助10
1秒前
Jenny发布了新的文献求助10
1秒前
如意枫叶发布了新的文献求助10
1秒前
2秒前
2秒前
wangx发布了新的文献求助10
2秒前
HY发布了新的文献求助10
3秒前
Hao_Wang完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
phil完成签到,获得积分10
5秒前
暮尘尘完成签到,获得积分10
6秒前
我爱背单词完成签到,获得积分10
6秒前
6秒前
8秒前
8秒前
hutu的小朱完成签到,获得积分10
10秒前
科研通AI6应助小马采纳,获得10
10秒前
11秒前
11秒前
YaoChen完成签到,获得积分10
11秒前
亮仔发布了新的文献求助10
11秒前
12秒前
爆米花应助kkk采纳,获得20
12秒前
充电宝应助charint采纳,获得10
12秒前
希望天下0贩的0应助wyyfff采纳,获得10
12秒前
12秒前
含糊的电源完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
红叶发布了新的文献求助10
15秒前
阿成发布了新的文献求助10
15秒前
倔强毛驴侠完成签到,获得积分10
15秒前
宁静致远完成签到,获得积分10
15秒前
掮客发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
嗷嗷嗷完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551588
求助须知:如何正确求助?哪些是违规求助? 4636427
关于积分的说明 14644139
捐赠科研通 4578354
什么是DOI,文献DOI怎么找? 2510716
邀请新用户注册赠送积分活动 1486074
关于科研通互助平台的介绍 1457447