Design of double layer protective coatings: Finite element modeling and machine learning approximations

有限元法 图层(电子) 材料科学 摩擦学 缩进 模数 涂层 机械工程 算法 结构工程 计算机科学 复合材料 工程类
作者
В. И. Колесников,D. M. Pashkov,O. A. Belyak,Alexander A. Guda,S. A. Danilchenko,D. S. Manturov,Е. С. Новиков,O. V. Kudryakov,Sergey A. Guda,А. В. Солдатов,И. В. Колесников
出处
期刊:Acta Astronautica [Elsevier]
卷期号:204: 869-877 被引量:10
标识
DOI:10.1016/j.actaastro.2022.11.007
摘要

Thin film-composed coatings can significantly improve the mechanical and tribological properties of spacecraft friction units. In this regard, protection by ion-plasma coatings has become one of the most used options and well-established technologies. However, design of coatings that remain effective over multiple usages, is a challenge. Improving their production requires a large number of parameters to be optimized and many verification experiments to be set up. We exploited machine learning algorithm to solve the problem of double layer coatings optimization with respect to a set of mechanical properties (hardness, Young's modulus, Poisson's ratio, and yield stress). The training dataset was constructed using the adaptive sampling algorithm and numerical simulation of indentation in ANSYS for coatings of different compositions and thicknesses. The machine learning approximation provided significant accuracy (R 2 > 0.96) in predicting the coating hardness based on the mechanical properties of its individual layers. The feature importance analysis of the Extra Trees algorithm was used to define the parts of the indentation curve that carry information about the properties of individual coating layers. We have also addressed the inverse problem of coatings design in terms of the required hardness. Our findings demonstrate that only tandem approach to the cross-validation task permitted correct estimation of error in the presence of multiple ambiguous solutions. The value of error was smaller than 0.15 GPa. Being comprehensive, the proposed methodology can be applied to design optimal multilayer coatings in terms of their mechanical properties for friction units in aviation and rocketry-astronautics. • Database of numerical nanoindentation experiments for double layered coatings. • Direct problem of predicting coating hardness from layer's parameters was solved. • Extra Trees algorithm has high performance for predicting hardness: R2 score >0.95 • Inverse problem of predicting layer's parameters from coating hardness was solved. • Tandem approach was important during the cross-validation in the inverse problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助EurekaOvo采纳,获得10
刚刚
华仔应助沈笑寒采纳,获得10
刚刚
可爱半凡发布了新的文献求助10
1秒前
尺子尺子和池子完成签到,获得积分10
2秒前
2秒前
百步穿杨发布了新的文献求助10
2秒前
zcw发布了新的文献求助10
3秒前
glq发布了新的文献求助10
4秒前
mm发布了新的文献求助10
5秒前
香蕉觅云应助务实涔雨采纳,获得10
5秒前
科研通AI2S应助李锐采纳,获得10
5秒前
5秒前
illmaticRui完成签到,获得积分10
6秒前
zhaoyuqing发布了新的文献求助10
6秒前
搞怪书兰发布了新的文献求助10
7秒前
冷酷的以筠完成签到 ,获得积分10
7秒前
7秒前
CodeCraft应助可爱半凡采纳,获得10
7秒前
李哈哈发布了新的文献求助30
8秒前
VVV发布了新的文献求助10
9秒前
9秒前
FashionBoy应助任性蘑菇采纳,获得10
9秒前
10秒前
ZZY完成签到 ,获得积分10
10秒前
JamesPei应助mm采纳,获得10
10秒前
Nora完成签到,获得积分10
10秒前
从容飞阳完成签到,获得积分10
11秒前
咕咕发布了新的文献求助10
11秒前
Hello应助小鱼鱼Fish采纳,获得10
11秒前
冷酷的以筠关注了科研通微信公众号
12秒前
13秒前
Saluzi发布了新的文献求助10
14秒前
william8688发布了新的文献求助10
15秒前
7715发布了新的文献求助10
15秒前
16秒前
star完成签到,获得积分20
16秒前
16秒前
耳与总完成签到,获得积分10
17秒前
逢考必过完成签到 ,获得积分10
17秒前
17秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207057
求助须知:如何正确求助?哪些是违规求助? 2856477
关于积分的说明 8104841
捐赠科研通 2521574
什么是DOI,文献DOI怎么找? 1354913
科研通“疑难数据库(出版商)”最低求助积分说明 642098
邀请新用户注册赠送积分活动 613343