Design of double layer protective coatings: Finite element modeling and machine learning approximations

有限元法 图层(电子) 材料科学 摩擦学 缩进 模数 涂层 机械工程 算法 结构工程 计算机科学 复合材料 工程类
作者
В. И. Колесников,D. M. Pashkov,O. A. Belyak,Alexander A. Guda,S. A. Danilchenko,D. S. Manturov,Е. С. Новиков,O. V. Kudryakov,С. А. Гуда,А. В. Солдатов,И. В. Колесников
出处
期刊:Acta Astronautica [Elsevier]
卷期号:204: 869-877 被引量:17
标识
DOI:10.1016/j.actaastro.2022.11.007
摘要

Thin film-composed coatings can significantly improve the mechanical and tribological properties of spacecraft friction units. In this regard, protection by ion-plasma coatings has become one of the most used options and well-established technologies. However, design of coatings that remain effective over multiple usages, is a challenge. Improving their production requires a large number of parameters to be optimized and many verification experiments to be set up. We exploited machine learning algorithm to solve the problem of double layer coatings optimization with respect to a set of mechanical properties (hardness, Young's modulus, Poisson's ratio, and yield stress). The training dataset was constructed using the adaptive sampling algorithm and numerical simulation of indentation in ANSYS for coatings of different compositions and thicknesses. The machine learning approximation provided significant accuracy (R 2 > 0.96) in predicting the coating hardness based on the mechanical properties of its individual layers. The feature importance analysis of the Extra Trees algorithm was used to define the parts of the indentation curve that carry information about the properties of individual coating layers. We have also addressed the inverse problem of coatings design in terms of the required hardness. Our findings demonstrate that only tandem approach to the cross-validation task permitted correct estimation of error in the presence of multiple ambiguous solutions. The value of error was smaller than 0.15 GPa. Being comprehensive, the proposed methodology can be applied to design optimal multilayer coatings in terms of their mechanical properties for friction units in aviation and rocketry-astronautics. • Database of numerical nanoindentation experiments for double layered coatings. • Direct problem of predicting coating hardness from layer's parameters was solved. • Extra Trees algorithm has high performance for predicting hardness: R2 score >0.95 • Inverse problem of predicting layer's parameters from coating hardness was solved. • Tandem approach was important during the cross-validation in the inverse problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li发布了新的文献求助10
2秒前
无辜的行云完成签到 ,获得积分0
5秒前
华仔应助Li采纳,获得10
8秒前
t铁核桃1985完成签到 ,获得积分0
16秒前
含蓄的静竹完成签到 ,获得积分10
21秒前
忧心的藏鸟完成签到 ,获得积分10
31秒前
xue完成签到 ,获得积分10
31秒前
Amy完成签到 ,获得积分10
40秒前
家的温暖完成签到,获得积分10
47秒前
你帅你有理完成签到,获得积分10
52秒前
蛋卷完成签到 ,获得积分10
53秒前
1分钟前
爱沉淀的太阳花完成签到,获得积分10
1分钟前
陈A完成签到 ,获得积分10
1分钟前
1分钟前
hi_traffic完成签到,获得积分10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
何晶晶完成签到 ,获得积分10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
丫丫完成签到 ,获得积分10
1分钟前
博修完成签到,获得积分10
1分钟前
啊哈哈哈哈哈完成签到 ,获得积分10
2分钟前
qjq琪完成签到 ,获得积分10
2分钟前
wmz完成签到 ,获得积分10
2分钟前
夏荷狸发布了新的文献求助10
2分钟前
科研通AI6应助qjq琪采纳,获得10
2分钟前
舒适涵山完成签到,获得积分10
2分钟前
Overlap完成签到 ,获得积分10
2分钟前
shlw完成签到,获得积分10
2分钟前
Brave发布了新的文献求助10
2分钟前
求助人员发布了新的文献求助10
3分钟前
nannan完成签到 ,获得积分10
3分钟前
BowieHuang应助hhhhhhh采纳,获得10
3分钟前
灵感大王喵完成签到 ,获得积分10
3分钟前
南浔完成签到 ,获得积分10
3分钟前
一天完成签到 ,获得积分10
3分钟前
Lily完成签到 ,获得积分10
3分钟前
hani完成签到,获得积分10
3分钟前
WSY完成签到 ,获得积分10
3分钟前
搬砖王完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650009
关于积分的说明 14689401
捐赠科研通 4591860
什么是DOI,文献DOI怎么找? 2519386
邀请新用户注册赠送积分活动 1491920
关于科研通互助平台的介绍 1463118