Multi-Objective Particle Swarm Optimization Based Preprocessing of Multi-Class Extremely Imbalanced Datasets

粒子群优化 计算机科学 人工智能 过程(计算) 班级(哲学) 预处理器 任务(项目管理) 数据挖掘 特征(语言学) 特征选择 机器学习 选择(遗传算法) 突出 模式识别(心理学) 工程类 语言学 哲学 系统工程 操作系统
作者
R. Devi Priya,R. Sivaraj,Ajith Abraham,T. Pravin,P. Sivasankar,N. Anitha
出处
期刊:International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems [World Scientific]
卷期号:30 (05): 735-755 被引量:92
标识
DOI:10.1142/s0218488522500209
摘要

Today’s datasets are usually very large with many features and making analysis on such datasets is really a tedious task. Especially when performing classification, selecting attributes that are salient for the process is a brainstorming task. It is more difficult when there are many class labels for the target class attribute and hence many researchers have introduced methods to select features for performing classification on multi-class attributes. The process becomes more tedious when the attribute values are imbalanced for which researchers have contributed many methods. But, there is no sufficient research to handle extreme imbalance and feature selection together and hence this paper aims to bridge this gap. Here Particle Swarm Optimization (PSO), an efficient evolutionary algorithm is used to handle imbalanced dataset and feature selection process is also enhanced with the required functionalities. First, Multi-objective Particle Swarm Optimization is used to transform the imbalanced datasets into balanced one and then another version of Multi-objective Particle Swarm Optimization is used to select the significant features. The proposed methodology is applied on eight multi-class extremely imbalanced datasets and the experimental results are found to be better than other existing methods in terms of classification accuracy, G mean, F measure. The results validated by using Friedman test also confirm that the proposed methodology effectively balances the dataset with less number of features than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hx完成签到 ,获得积分10
刚刚
1秒前
keyan发布了新的文献求助30
1秒前
1秒前
fanfan发布了新的文献求助10
1秒前
duming发布了新的文献求助10
2秒前
2秒前
muye发布了新的文献求助10
2秒前
2秒前
大个应助甜美白昼采纳,获得10
2秒前
沈雨琦应助重要手机采纳,获得10
3秒前
研友_VZG7GZ应助鱼维尼采纳,获得10
3秒前
xuh发布了新的文献求助10
4秒前
研友RH完成签到,获得积分10
4秒前
!!!完成签到,获得积分10
4秒前
冷傲迎梦发布了新的文献求助10
5秒前
4545发布了新的文献求助10
5秒前
5秒前
李爱国应助3w要少睡觉采纳,获得10
6秒前
李爱国应助chenwei采纳,获得50
6秒前
6秒前
十三十四十五完成签到,获得积分10
7秒前
称心的仙人掌完成签到 ,获得积分10
7秒前
小胡完成签到,获得积分10
7秒前
Orange应助fanfan采纳,获得10
8秒前
8秒前
甜甜安荷发布了新的文献求助10
8秒前
SciGPT应助元谷雪采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
Z1987完成签到,获得积分10
9秒前
9秒前
科研通AI5应助王jj采纳,获得10
9秒前
9秒前
jiabao发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576877
求助须知:如何正确求助?哪些是违规求助? 3996040
关于积分的说明 12371262
捐赠科研通 3670085
什么是DOI,文献DOI怎么找? 2022574
邀请新用户注册赠送积分活动 1056697
科研通“疑难数据库(出版商)”最低求助积分说明 943826