Multi-Objective Particle Swarm Optimization Based Preprocessing of Multi-Class Extremely Imbalanced Datasets

粒子群优化 计算机科学 人工智能 过程(计算) 班级(哲学) 预处理器 任务(项目管理) 数据挖掘 特征(语言学) 特征选择 机器学习 选择(遗传算法) 突出 模式识别(心理学) 工程类 语言学 哲学 系统工程 操作系统
作者
R. Devi Priya,R. Sivaraj,Ajith Abraham,T. Pravin,P. Sivasankar,N. Anitha
出处
期刊:International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems [World Scientific]
卷期号:30 (05): 735-755 被引量:92
标识
DOI:10.1142/s0218488522500209
摘要

Today’s datasets are usually very large with many features and making analysis on such datasets is really a tedious task. Especially when performing classification, selecting attributes that are salient for the process is a brainstorming task. It is more difficult when there are many class labels for the target class attribute and hence many researchers have introduced methods to select features for performing classification on multi-class attributes. The process becomes more tedious when the attribute values are imbalanced for which researchers have contributed many methods. But, there is no sufficient research to handle extreme imbalance and feature selection together and hence this paper aims to bridge this gap. Here Particle Swarm Optimization (PSO), an efficient evolutionary algorithm is used to handle imbalanced dataset and feature selection process is also enhanced with the required functionalities. First, Multi-objective Particle Swarm Optimization is used to transform the imbalanced datasets into balanced one and then another version of Multi-objective Particle Swarm Optimization is used to select the significant features. The proposed methodology is applied on eight multi-class extremely imbalanced datasets and the experimental results are found to be better than other existing methods in terms of classification accuracy, G mean, F measure. The results validated by using Friedman test also confirm that the proposed methodology effectively balances the dataset with less number of features than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼白晴完成签到 ,获得积分10
刚刚
刚刚
疯狂的羊癫疯完成签到,获得积分10
1秒前
小二郎应助Ivy采纳,获得10
2秒前
4秒前
vae完成签到,获得积分10
4秒前
小蜻蜓发布了新的文献求助30
6秒前
7秒前
9秒前
魏凡之完成签到 ,获得积分10
10秒前
13秒前
萧水白应助emmm采纳,获得10
13秒前
orixero应助rena采纳,获得10
14秒前
Ivy完成签到,获得积分20
14秒前
马不停蹄发布了新的文献求助10
15秒前
16秒前
17秒前
坦率的刺猬完成签到,获得积分10
17秒前
19秒前
顾矜应助落寞臻采纳,获得10
22秒前
bbdd2334发布了新的文献求助10
22秒前
22秒前
JamesPei应助科研通管家采纳,获得10
24秒前
小马甲应助科研通管家采纳,获得10
24秒前
ED应助科研通管家采纳,获得10
24秒前
dinghaifeng应助科研通管家采纳,获得10
24秒前
慕青应助科研通管家采纳,获得10
24秒前
打打应助科研通管家采纳,获得10
24秒前
温冰雪应助科研通管家采纳,获得10
24秒前
24秒前
29秒前
30秒前
30秒前
卤蛋长不高完成签到 ,获得积分10
31秒前
33秒前
33秒前
34秒前
37秒前
乐乐发布了新的文献求助10
39秒前
如意真发布了新的文献求助10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958087
求助须知:如何正确求助?哪些是违规求助? 3504271
关于积分的说明 11117667
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788396
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802541