已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Objective Particle Swarm Optimization Based Preprocessing of Multi-Class Extremely Imbalanced Datasets

粒子群优化 计算机科学 人工智能 过程(计算) 班级(哲学) 预处理器 任务(项目管理) 数据挖掘 特征(语言学) 特征选择 机器学习 选择(遗传算法) 突出 模式识别(心理学) 工程类 系统工程 哲学 操作系统 语言学
作者
R. Devi Priya,R. Sivaraj,Ajith Abraham,T. Pravin,P. Sivasankar,N. Anitha
出处
期刊:International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems [World Scientific]
卷期号:30 (05): 735-755 被引量:92
标识
DOI:10.1142/s0218488522500209
摘要

Today’s datasets are usually very large with many features and making analysis on such datasets is really a tedious task. Especially when performing classification, selecting attributes that are salient for the process is a brainstorming task. It is more difficult when there are many class labels for the target class attribute and hence many researchers have introduced methods to select features for performing classification on multi-class attributes. The process becomes more tedious when the attribute values are imbalanced for which researchers have contributed many methods. But, there is no sufficient research to handle extreme imbalance and feature selection together and hence this paper aims to bridge this gap. Here Particle Swarm Optimization (PSO), an efficient evolutionary algorithm is used to handle imbalanced dataset and feature selection process is also enhanced with the required functionalities. First, Multi-objective Particle Swarm Optimization is used to transform the imbalanced datasets into balanced one and then another version of Multi-objective Particle Swarm Optimization is used to select the significant features. The proposed methodology is applied on eight multi-class extremely imbalanced datasets and the experimental results are found to be better than other existing methods in terms of classification accuracy, G mean, F measure. The results validated by using Friedman test also confirm that the proposed methodology effectively balances the dataset with less number of features than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
殷勤的凌蝶完成签到 ,获得积分10
2秒前
轻松棉花糖完成签到 ,获得积分10
2秒前
珏珏_不是玉玉完成签到 ,获得积分10
4秒前
FX1688完成签到 ,获得积分10
5秒前
5秒前
林欢喜完成签到,获得积分10
5秒前
8秒前
WZH完成签到,获得积分10
9秒前
yuyuan完成签到,获得积分10
9秒前
10秒前
有趣的银完成签到,获得积分10
11秒前
my应助快乐的小蘑菇采纳,获得30
12秒前
文艺语蓉发布了新的文献求助10
12秒前
五月初夏发布了新的文献求助10
12秒前
aj发布了新的文献求助10
12秒前
13秒前
震动的忆雪完成签到 ,获得积分10
13秒前
艾路完成签到,获得积分10
14秒前
pkin完成签到,获得积分10
14秒前
共享精神应助小王采纳,获得30
16秒前
桐桐应助小王采纳,获得30
16秒前
搜集达人应助小王采纳,获得30
16秒前
CipherSage应助小王采纳,获得30
16秒前
脑洞疼应助小王采纳,获得30
16秒前
蓦然发布了新的文献求助10
17秒前
孑然完成签到 ,获得积分10
17秒前
18秒前
五月初夏完成签到,获得积分10
19秒前
小小fa完成签到 ,获得积分10
20秒前
小吉祥发布了新的文献求助10
20秒前
木禾发布了新的文献求助10
20秒前
Bonnie发布了新的文献求助10
21秒前
闫123完成签到,获得积分10
22秒前
木由发布了新的文献求助10
24秒前
李爱国应助蓦然采纳,获得10
25秒前
爆米花应助小王采纳,获得30
27秒前
科目三应助小王采纳,获得30
27秒前
可爱的函函应助小王采纳,获得30
27秒前
Lucas应助小王采纳,获得30
27秒前
爆米花应助小王采纳,获得30
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301583
求助须知:如何正确求助?哪些是违规求助? 4449070
关于积分的说明 13847752
捐赠科研通 4335139
什么是DOI,文献DOI怎么找? 2380126
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341130