贻贝
比索
贻贝
异源的
生物化学
化学
硫氧还蛋白
异源表达
分子生物学
重组DNA
生物
细胞生物学
基因
渔业
作者
Xinyi Wang,Xinxin Feng,Rui Xue,Hong Xu,Rui Wang,Lujia Zhang,Sha Li
标识
DOI:10.1016/j.ijbiomac.2022.11.147
摘要
Mussel foot proteins (Mfps) display application potential with strong adhesion, enabling mussels to adhere firmly to various surfaces. Mytilus galloprovincialis foot protein 3B (Mgfp-3B) exhibits this characteristic remarkably. However, it remains a challenge for further research due to the low soluble expression of heterologous production. In this study, a small ubiquitin-related modifier (SUMO) and thioredoxin A (TrxA), which catalyzed the proper folding of disulfide bridges, were selected to increase the soluble expression of mfps. An additional ribosome binding site was introduced between the molecular chaperones and Mgfp-3B (fp-3) to form a bicistronic translation-coupled expression vector for co-expression. The results revealed that the combination of SUMO-TrxA increased the soluble expression of fp-3 by 18.07 %. Furthermore, the SUMO-TrxA also boosted the soluble expression of hybrid mfps Mgfp-3B-Mfp-1 (fp-3-1) by 11.29 %, Mgfp-3B-Mgfp-3B (fp-3-3) by 19.91 %, and Mgfp-3B-Mgfp-5 (fp-3-5) by 14.03 %. Ultimately, by high cell density cultivation in a 5 L bioreactor, the yields of fp-3, fp-3-3, and fp-3-5 co-expressed with SUMO-TrxA reached 217.75 mg/L, 127.2 mg/L, and 97.28 mg/L, respectively. Consequently, soluble production of mfps holds great potential for the sustainable supply of protein adhesive materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI