Characterizing the structure of mouse behavior using Motion Sequencing

计算机科学 管道(软件) 协议(科学) 集合(抽象数据类型) 背景(考古学) 音节 人工智能 帧(网络) 机器学习 计算机视觉 语音识别 生物 医学 古生物学 电信 替代医学 病理 程序设计语言
作者
Sherry Lin,Winthrop F. Gillis,Caleb Weinreb,Ayman Zeine,Samuel C. Jones,Emma Marie Robinson,Jeffrey Markowitz,Sandeep Robert Datta
出处
期刊:Cornell University - arXiv 被引量:4
标识
DOI:10.48550/arxiv.2211.08497
摘要

Spontaneous mouse behavior is composed from repeatedly-used modules of movement (e.g., rearing, running, grooming) that are flexibly placed into sequences whose content evolves over time. By identifying behavioral modules and the order in which they are expressed, researchers can gain insight into the impact of drugs, genes, context, sensory stimuli and neural activity on behavior. Here we present a protocol for performing Motion Sequencing (MoSeq), an ethologically-inspired method that uses 3D machine vision and unsupervised machine learning to decompose spontaneous mouse behavior in the laboratory into a series of elemental modules called "syllables". This protocol is based upon a notebook-based pipeline for MoSeq that includes modules for depth video acquisition, data pre-processing and modeling, as well as a standardized set of visualization tools. Users are provided with instructions and code for building a MoSeq imaging rig and acquiring three-dimensional video of spontaneous mouse behavior for submission to the modeling framework; the outputs of this protocol include syllable labels for each frame of video data as well as summary plots describing how often each syllable was used and how syllables transitioned from one to the other over time. This protocol and the accompanying pipeline significantly lower the bar for adopting this unsupervised, data-driven approach to characterizing mouse behavior, enabling users without significant computational ethology experience to gain insight into how the structure of behavior is altered after experimental manipulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助机智凝海采纳,获得30
1秒前
FF完成签到,获得积分10
1秒前
FashionBoy应助瑞雪不是雪采纳,获得10
3秒前
XuChaogang完成签到 ,获得积分10
3秒前
孤独的根号三完成签到 ,获得积分10
4秒前
4秒前
无聊的小懒虫完成签到 ,获得积分10
5秒前
布鲁爱思完成签到,获得积分10
10秒前
11秒前
16秒前
17秒前
思源应助lemon 1118采纳,获得30
17秒前
17秒前
wanci应助竺七采纳,获得10
20秒前
小蘑菇应助超级亿先采纳,获得10
21秒前
xm发布了新的文献求助10
21秒前
NexusExplorer应助yy采纳,获得10
22秒前
Syh关注了科研通微信公众号
22秒前
23秒前
zy发布了新的文献求助10
24秒前
25秒前
25秒前
26秒前
27秒前
27秒前
28秒前
Chloe发布了新的文献求助30
29秒前
shgd完成签到,获得积分10
29秒前
李j1发布了新的文献求助20
29秒前
lemon 1118发布了新的文献求助30
31秒前
端庄芾发布了新的文献求助10
31秒前
32秒前
33秒前
唯爱林发布了新的文献求助10
33秒前
zhonglv7应助Chloe采纳,获得10
33秒前
33秒前
重重发布了新的文献求助30
34秒前
永远有多远完成签到,获得积分10
34秒前
赘婿应助yes采纳,获得10
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300488
求助须知:如何正确求助?哪些是违规求助? 4448338
关于积分的说明 13845737
捐赠科研通 4334050
什么是DOI,文献DOI怎么找? 2379324
邀请新用户注册赠送积分活动 1374471
关于科研通互助平台的介绍 1340113