RLBind: a deep learning method to predict RNA–ligand binding sites

核糖核酸 计算生物学 小分子 结合位点 计算机科学 RNA结合蛋白 卷积神经网络 药物发现 核酸结构 人工智能 生物 生物信息学 基因 遗传学
作者
Kaili Wang,Renyi Zhou,Yifan Wu,Min Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:4
标识
DOI:10.1093/bib/bbac486
摘要

Identification of RNA-small molecule binding sites plays an essential role in RNA-targeted drug discovery and development. These small molecules are expected to be leading compounds to guide the development of new types of RNA-targeted therapeutics compared with regular therapeutics targeting proteins. RNAs can provide many potential drug targets with diverse structures and functions. However, up to now, only a few methods have been proposed. Predicting RNA-small molecule binding sites still remains a big challenge. New computational model is required to better extract the features and predict RNA-small molecule binding sites more accurately. In this paper, a deep learning model, RLBind, was proposed to predict RNA-small molecule binding sites from sequence-dependent and structure-dependent properties by combining global RNA sequence channel and local neighbor nucleotides channel. To our best knowledge, this research was the first to develop a convolutional neural network for RNA-small molecule binding sites prediction. Furthermore, RLBind also can be used as a potential tool when the RNA experimental tertiary structure is not available. The experimental results show that RLBind outperforms other state-of-the-art methods in predicting binding sites. Therefore, our study demonstrates that the combination of global information for full-length sequences and local information for limited local neighbor nucleotides in RNAs can improve the model's predictive performance for binding sites prediction. All datasets and resource codes are available at https://github.com/KailiWang1/RLBind.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
奋斗的怀曼完成签到,获得积分10
1秒前
扎心发布了新的文献求助10
1秒前
不安慕蕊完成签到,获得积分10
1秒前
bettersy完成签到,获得积分10
2秒前
优美一寡发布了新的文献求助10
2秒前
wanci应助赧赧采纳,获得10
3秒前
可爱的摩托完成签到,获得积分10
3秒前
沉默完成签到 ,获得积分10
4秒前
4秒前
xx发布了新的文献求助80
5秒前
5秒前
Luo完成签到,获得积分10
5秒前
HEIKU应助烟烟烟采纳,获得40
6秒前
Li完成签到,获得积分10
6秒前
TRY发布了新的文献求助10
7秒前
雁过完成签到 ,获得积分10
7秒前
852应助扎心采纳,获得10
7秒前
鲜艳的从波完成签到,获得积分10
8秒前
8秒前
fs完成签到 ,获得积分10
9秒前
9秒前
Hello应助吴大王采纳,获得10
10秒前
王谊讴完成签到,获得积分10
10秒前
maoaq完成签到,获得积分20
11秒前
Irving完成签到,获得积分10
11秒前
紫麒麟完成签到,获得积分10
11秒前
12秒前
junzilan完成签到,获得积分10
14秒前
汉堡包应助阿呆采纳,获得10
14秒前
没有锁骨的丑丑完成签到,获得积分10
14秒前
wt发布了新的文献求助10
15秒前
Jasper应助xpptt采纳,获得10
15秒前
15秒前
hsli完成签到,获得积分10
16秒前
16秒前
优雅啤酒完成签到,获得积分20
17秒前
shelemi发布了新的文献求助10
17秒前
17秒前
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150928
求助须知:如何正确求助?哪些是违规求助? 2802473
关于积分的说明 7847995
捐赠科研通 2459756
什么是DOI,文献DOI怎么找? 1309327
科研通“疑难数据库(出版商)”最低求助积分说明 628891
版权声明 601757