已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Combining Radiomics Features with Immune Response Biomarkers to Build a XGBoost Model to Predict Radiation Pneumonitis (RP) in Patients with Primary Lung Cancer

医学 无线电技术 肺癌 生物标志物 放射治疗 内科学 肺炎 肿瘤科 犬尿氨酸 放射科 生物化学 化学 氨基酸 色氨酸
作者
J. Liu,M. Xu,W. Chen,F.M. Kong
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:114 (3): e379-e379
标识
DOI:10.1016/j.ijrobp.2022.07.1522
摘要

Purpose/Objective(s)

Patients are heterogenous in their responses to radiation lung damage. It has been reported mostly from western people that the computed tomography (CT) radiomics features have a potential to identify patients at high risk for radiation pneumonitis (RP) in Western people. The purpose of this study was to 1) validate the significance of radiomics features on RP prediction, 2) exam the differences in systemic level of immune checkpoint indoleamine 2,3-dioxygenase (IDO) in patients with RP and without RP, and 3) explore the performance of the extreme gradient boosting (XGBoost) of combining above factors, on grade 2 and above RP in Chinese patients with primary lung cancer.

Materials/Methods

Planning CT scans and blood of baseline and end of treatment from 43 patients treated for primary lung cancer with radiotherapy were collected. Grade 2 and above RP was defined as cough or short of breath need medication treatment during or at the end of radiotherapy. Radiomics features were extracted from lung-GTV volume in planning CT using python package open-source software. Serum kynurenine, tryptophan and kynurenine: tryptophan ratio, which is IDO systemic activity related biomarkers (IDO biomarker) were measured at pre-RT and end of RT. The relation between features [radiomics features and IDO biomarker] and RP. Finally, the radiomics features with p value smaller than 0.1 were used for modeling. Patients were randomly split into 80% for training and 20% for validation. Model was built with XGBoost in train dataset and was tested in independent test dataset. The model predictive ability was assessed using area under the receiver operating characteristic curve (AUC).

Results

Seven out of 43 (16.3%) patients presented grade 2 and above RP. A total of 109 radiomics features were extracted. A total of 31 features, including 6 first-order, 4 gray level co-occurrence matrix (GLCM), 5 gray level dependence matrix (GLDM), 5 gray level run length matrix (GLRLM), 3 gray level size zone matrix (GLSZM) and 8 shape features, were significantly different (p value ≤ 0.05) between patients with RP and without RP. The IDO biomarkers at pre-RT and end of RT seemed to be non-significant (p value: 0.46-0.81). 43 radiomics features with p values smaller than 0.1 were used for model building. AUC of in the training dataset was 0.86 [95% CI 0.75-1] and of test dataset was 0.75 [95% 0.5-1]. A model of combined IDO biomarkers and radiomics features to build model, The predictive AUC of the training dataset was 0.9 [0.75-1] and of test dataset was 0.75 [0.5-1]. AUC slightly improved on training set.

Conclusion

This study at some degree validated the significance of radiomics features extracted from planning CT on predicting grade 2 and above RP in primary lung cancer in Chinese patients which has not been reported previously. IDO biomarkers did seem help, but the model built with XGBoost approach improved the predictive ability. Study with larger number of patients and ideally from multicenters are needed to validate this finding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮采波发布了新的文献求助10
刚刚
请叫我风吹麦浪应助微微采纳,获得10
4秒前
ding应助ljc采纳,获得30
4秒前
4秒前
酷波er应助Wendygogogo采纳,获得10
4秒前
陈忱溪发布了新的文献求助10
5秒前
平淡的雁开完成签到 ,获得积分10
6秒前
8秒前
10秒前
13秒前
14秒前
17秒前
yy发布了新的文献求助20
17秒前
清脆的忆梅完成签到 ,获得积分10
21秒前
幸福大白发布了新的文献求助10
22秒前
悦悦应助灯飞采纳,获得10
23秒前
23秒前
领导范儿应助jie采纳,获得10
23秒前
24秒前
26秒前
27秒前
逃跑的想表白的你猜完成签到,获得积分10
27秒前
28秒前
kid1412完成签到 ,获得积分10
28秒前
30秒前
酷波er应助yy采纳,获得20
30秒前
31秒前
wbh发布了新的文献求助10
32秒前
32秒前
饺子发布了新的文献求助10
34秒前
科研通AI2S应助负责怀莲采纳,获得10
34秒前
jie发布了新的文献求助10
36秒前
我是老大应助wbh采纳,获得10
40秒前
jie完成签到,获得积分20
42秒前
胖大海完成签到 ,获得积分10
43秒前
43秒前
夜雨声烦发布了新的文献求助10
43秒前
45秒前
46秒前
诺诺发布了新的文献求助10
47秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994362
求助须知:如何正确求助?哪些是违规求助? 3534806
关于积分的说明 11266549
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806427
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749