From drugs to targets: Reverse engineering the virtual screening process on a proteomic scale

虚拟筛选 优先次序 药物发现 计算机科学 计算生物学 化学相似性 表型筛选 适用范围 高通量筛选 鉴定(生物学) 药品 药物开发 生化工程 数据挖掘 机器学习 生物信息学 生物 聚类分析 表型 数量结构-活动关系 遗传学 工程类 药理学 基因 植物 管理科学
作者
Gustavo Schottlender,Juan Manuel Prieto,Miranda C. Palumbo,Florencia Castello,Federico Serral,Ezequiel Sosa,Adrián G. Turjanski,Marcelo A. Martí,Darío Fernández Do Porto
出处
期刊:Frontiers in drug discovery [Frontiers Media SA]
卷期号:2 被引量:4
标识
DOI:10.3389/fddsv.2022.969983
摘要

Phenotypic screening is a powerful technique that allowed the discovery of antimicrobials to fight infectious diseases considered deadly less than a century ago. In high throughput phenotypic screening assays, thousands of compounds are tested for their capacity to inhibit microbial growth in-vitro . After an active compound is found, identifying the molecular target is the next step. Knowing the specific target is key for understanding its mechanism of action, and essential for future drug development. Moreover, this knowledge allows drug developers to design new generations of drugs with increased efficacy and reduced side effects. However, target identification for a known active compound is usually a very difficult task. In the present work, we present a powerful reverse virtual screening strategy, that can help researchers working in the drug discovery field, to predict a set of putative targets for a compound known to exhibit antimicrobial effects. The strategy combines chemical similarity methods, with target prioritization based on essentiality data, and molecular-docking. These steps can be tailored according to the researchers’ needs and pathogen’s available information. Our results show that using only the chemical similarity approach, this method is capable of retrieving potential targets for half of tested compounds. The results show that even for a low chemical similarity threshold whenever domains are retrieved, the correct domain is among those retrieved in more than 80% of the queries. Prioritizing targets by an essentiality criteria allows us to further reduce, up to 3–4 times, the number of putative targets. Lastly, docking is able to identify the correct domain ranked in the top two in about two thirds of cases. Bias docking improves predictive capacity only slightly in this scenario. We expect to integrate the presented strategy in the context of Target Pathogen database to make it available for the wide community of researchers working in antimicrobials discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清辉夜凝完成签到 ,获得积分10
刚刚
商毛毛完成签到,获得积分10
刚刚
刚刚
胖头鱼发布了新的文献求助30
1秒前
栗子发布了新的文献求助10
1秒前
龙海发布了新的文献求助10
1秒前
1秒前
务实黄豆完成签到,获得积分10
2秒前
2秒前
2秒前
zrrr完成签到 ,获得积分10
3秒前
白白胖胖发布了新的文献求助10
3秒前
Giroro_roro完成签到,获得积分10
3秒前
上官若男应助略略略采纳,获得10
3秒前
无花果应助忘崽子小拳头采纳,获得10
3秒前
ssxw发布了新的文献求助10
5秒前
sasa发布了新的文献求助10
5秒前
得钦曲珍发布了新的文献求助10
6秒前
YuanF发布了新的文献求助10
6秒前
keke完成签到 ,获得积分10
7秒前
7秒前
梦XING完成签到 ,获得积分10
7秒前
香蕉孤风完成签到,获得积分10
8秒前
yanyue完成签到 ,获得积分10
8秒前
柠木发布了新的文献求助10
8秒前
9秒前
Xc完成签到,获得积分10
9秒前
awen完成签到,获得积分10
9秒前
浮游应助K2L采纳,获得10
10秒前
azuretimmq完成签到,获得积分10
10秒前
鑫鑫完成签到,获得积分10
11秒前
Dandy完成签到,获得积分10
11秒前
ceds完成签到,获得积分10
11秒前
Huang_being完成签到,获得积分10
12秒前
史永桂完成签到,获得积分10
12秒前
Aliya完成签到 ,获得积分10
12秒前
Nn宁发布了新的文献求助10
12秒前
壮观的夏蓉完成签到,获得积分0
13秒前
神棍喜来乐完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5269562
求助须知:如何正确求助?哪些是违规求助? 4427995
关于积分的说明 13781921
捐赠科研通 4305390
什么是DOI,文献DOI怎么找? 2362762
邀请新用户注册赠送积分活动 1358427
关于科研通互助平台的介绍 1321122