From drugs to targets: Reverse engineering the virtual screening process on a proteomic scale

虚拟筛选 优先次序 药物发现 计算机科学 计算生物学 化学相似性 表型筛选 适用范围 高通量筛选 鉴定(生物学) 药品 药物开发 生化工程 数据挖掘 机器学习 生物信息学 生物 聚类分析 表型 数量结构-活动关系 遗传学 工程类 药理学 基因 植物 管理科学
作者
Gustavo Schottlender,Juan Manuel Prieto,Miranda C. Palumbo,Florencia Castello,Federico Serral,Ezequiel Sosa,Adrián G. Turjanski,Marcelo A. Martí,Darío Fernández Do Porto
出处
期刊:Frontiers in drug discovery [Frontiers Media SA]
卷期号:2 被引量:4
标识
DOI:10.3389/fddsv.2022.969983
摘要

Phenotypic screening is a powerful technique that allowed the discovery of antimicrobials to fight infectious diseases considered deadly less than a century ago. In high throughput phenotypic screening assays, thousands of compounds are tested for their capacity to inhibit microbial growth in-vitro . After an active compound is found, identifying the molecular target is the next step. Knowing the specific target is key for understanding its mechanism of action, and essential for future drug development. Moreover, this knowledge allows drug developers to design new generations of drugs with increased efficacy and reduced side effects. However, target identification for a known active compound is usually a very difficult task. In the present work, we present a powerful reverse virtual screening strategy, that can help researchers working in the drug discovery field, to predict a set of putative targets for a compound known to exhibit antimicrobial effects. The strategy combines chemical similarity methods, with target prioritization based on essentiality data, and molecular-docking. These steps can be tailored according to the researchers’ needs and pathogen’s available information. Our results show that using only the chemical similarity approach, this method is capable of retrieving potential targets for half of tested compounds. The results show that even for a low chemical similarity threshold whenever domains are retrieved, the correct domain is among those retrieved in more than 80% of the queries. Prioritizing targets by an essentiality criteria allows us to further reduce, up to 3–4 times, the number of putative targets. Lastly, docking is able to identify the correct domain ranked in the top two in about two thirds of cases. Bias docking improves predictive capacity only slightly in this scenario. We expect to integrate the presented strategy in the context of Target Pathogen database to make it available for the wide community of researchers working in antimicrobials discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饶子阳完成签到,获得积分10
刚刚
77完成签到 ,获得积分10
4秒前
七QI完成签到 ,获得积分10
7秒前
cathylll完成签到 ,获得积分10
8秒前
12秒前
Cynthia完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助20
13秒前
积极的夏天完成签到 ,获得积分10
14秒前
Qixuan0727发布了新的文献求助50
15秒前
yyy发布了新的文献求助10
15秒前
xdy完成签到 ,获得积分10
17秒前
曾经沛白完成签到 ,获得积分10
18秒前
何兴棠完成签到,获得积分10
18秒前
新手上路完成签到,获得积分10
21秒前
小白完成签到 ,获得积分10
21秒前
pingpinglver发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
健康的电灯胆完成签到,获得积分0
22秒前
YvesWang发布了新的文献求助10
23秒前
24秒前
shor0414完成签到 ,获得积分10
24秒前
热心市民完成签到 ,获得积分10
25秒前
安安完成签到,获得积分10
26秒前
27秒前
量子星尘发布了新的文献求助10
30秒前
bayin发布了新的文献求助10
33秒前
她的城完成签到,获得积分0
34秒前
小五完成签到 ,获得积分10
34秒前
友好语风完成签到,获得积分10
34秒前
争当科研巨匠完成签到,获得积分10
35秒前
35秒前
NexusExplorer应助Jeffery426采纳,获得10
39秒前
道道sy完成签到,获得积分10
40秒前
40秒前
步步高完成签到,获得积分10
45秒前
朴素的士晋完成签到 ,获得积分10
45秒前
junjie完成签到,获得积分10
45秒前
能干戒指完成签到,获得积分10
46秒前
fomo完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597638
求助须知:如何正确求助?哪些是违规求助? 4009167
关于积分的说明 12409939
捐赠科研通 3688401
什么是DOI,文献DOI怎么找? 2033184
邀请新用户注册赠送积分活动 1066430
科研通“疑难数据库(出版商)”最低求助积分说明 951650