From drugs to targets: Reverse engineering the virtual screening process on a proteomic scale

虚拟筛选 优先次序 药物发现 计算机科学 计算生物学 化学相似性 表型筛选 适用范围 高通量筛选 鉴定(生物学) 药品 药物开发 生化工程 数据挖掘 机器学习 生物信息学 生物 聚类分析 表型 数量结构-活动关系 遗传学 工程类 药理学 基因 植物 管理科学
作者
Gustavo Schottlender,Juan Manuel Prieto,Miranda C. Palumbo,Florencia Castello,Federico Serral,Ezequiel Sosa,Adrián G. Turjanski,Marcelo A. Martí,Darío Fernández Do Porto
出处
期刊:Frontiers in drug discovery [Frontiers Media SA]
卷期号:2 被引量:4
标识
DOI:10.3389/fddsv.2022.969983
摘要

Phenotypic screening is a powerful technique that allowed the discovery of antimicrobials to fight infectious diseases considered deadly less than a century ago. In high throughput phenotypic screening assays, thousands of compounds are tested for their capacity to inhibit microbial growth in-vitro . After an active compound is found, identifying the molecular target is the next step. Knowing the specific target is key for understanding its mechanism of action, and essential for future drug development. Moreover, this knowledge allows drug developers to design new generations of drugs with increased efficacy and reduced side effects. However, target identification for a known active compound is usually a very difficult task. In the present work, we present a powerful reverse virtual screening strategy, that can help researchers working in the drug discovery field, to predict a set of putative targets for a compound known to exhibit antimicrobial effects. The strategy combines chemical similarity methods, with target prioritization based on essentiality data, and molecular-docking. These steps can be tailored according to the researchers’ needs and pathogen’s available information. Our results show that using only the chemical similarity approach, this method is capable of retrieving potential targets for half of tested compounds. The results show that even for a low chemical similarity threshold whenever domains are retrieved, the correct domain is among those retrieved in more than 80% of the queries. Prioritizing targets by an essentiality criteria allows us to further reduce, up to 3–4 times, the number of putative targets. Lastly, docking is able to identify the correct domain ranked in the top two in about two thirds of cases. Bias docking improves predictive capacity only slightly in this scenario. We expect to integrate the presented strategy in the context of Target Pathogen database to make it available for the wide community of researchers working in antimicrobials discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后海亦完成签到,获得积分10
1秒前
石页完成签到,获得积分10
1秒前
TRY驳回了李健应助
1秒前
1秒前
da完成签到,获得积分10
2秒前
曾经的代曼完成签到 ,获得积分20
3秒前
2323142578发布了新的文献求助10
3秒前
3秒前
孙福禄应助温婉的篮球采纳,获得10
4秒前
斯文败类应助伴风望海采纳,获得10
4秒前
4秒前
Nugget完成签到,获得积分10
4秒前
小巧的松思完成签到 ,获得积分10
5秒前
5秒前
会神发布了新的文献求助10
6秒前
wawaeryu完成签到,获得积分10
7秒前
汉堡包应助麦子采纳,获得10
8秒前
8秒前
所所应助zhou采纳,获得30
9秒前
橙色发布了新的文献求助10
9秒前
李健应助Zjx采纳,获得10
10秒前
小憩发布了新的文献求助10
10秒前
善学以致用应助milly采纳,获得10
10秒前
11秒前
11秒前
晴烟ZYM发布了新的文献求助30
12秒前
share完成签到,获得积分10
14秒前
14秒前
黑猫警长发布了新的文献求助10
15秒前
朴实山彤发布了新的文献求助10
15秒前
Ohhruby完成签到,获得积分10
15秒前
酷波er应助坐亭下采纳,获得10
16秒前
17秒前
17秒前
vffg发布了新的文献求助10
17秒前
秋夏发布了新的文献求助20
18秒前
xinxinbaby发布了新的文献求助10
20秒前
薅住科研的头发完成签到,获得积分10
21秒前
Joanna发布了新的文献求助10
23秒前
脑洞疼应助Fengliguantou采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992518
求助须知:如何正确求助?哪些是违规求助? 3533486
关于积分的说明 11262567
捐赠科研通 3273054
什么是DOI,文献DOI怎么找? 1805922
邀请新用户注册赠送积分活动 882858
科研通“疑难数据库(出版商)”最低求助积分说明 809496