From drugs to targets: Reverse engineering the virtual screening process on a proteomic scale

虚拟筛选 优先次序 药物发现 计算机科学 计算生物学 化学相似性 表型筛选 适用范围 高通量筛选 鉴定(生物学) 药品 药物开发 生化工程 数据挖掘 机器学习 生物信息学 生物 聚类分析 表型 数量结构-活动关系 遗传学 工程类 药理学 基因 植物 管理科学
作者
Gustavo Schottlender,Juan Manuel Prieto,Miranda C. Palumbo,Florencia Castello,Federico Serral,Ezequiel Sosa,Adrián G. Turjanski,Marcelo A. Martí,Darío Fernández Do Porto
出处
期刊:Frontiers in drug discovery [Frontiers Media SA]
卷期号:2 被引量:4
标识
DOI:10.3389/fddsv.2022.969983
摘要

Phenotypic screening is a powerful technique that allowed the discovery of antimicrobials to fight infectious diseases considered deadly less than a century ago. In high throughput phenotypic screening assays, thousands of compounds are tested for their capacity to inhibit microbial growth in-vitro . After an active compound is found, identifying the molecular target is the next step. Knowing the specific target is key for understanding its mechanism of action, and essential for future drug development. Moreover, this knowledge allows drug developers to design new generations of drugs with increased efficacy and reduced side effects. However, target identification for a known active compound is usually a very difficult task. In the present work, we present a powerful reverse virtual screening strategy, that can help researchers working in the drug discovery field, to predict a set of putative targets for a compound known to exhibit antimicrobial effects. The strategy combines chemical similarity methods, with target prioritization based on essentiality data, and molecular-docking. These steps can be tailored according to the researchers’ needs and pathogen’s available information. Our results show that using only the chemical similarity approach, this method is capable of retrieving potential targets for half of tested compounds. The results show that even for a low chemical similarity threshold whenever domains are retrieved, the correct domain is among those retrieved in more than 80% of the queries. Prioritizing targets by an essentiality criteria allows us to further reduce, up to 3–4 times, the number of putative targets. Lastly, docking is able to identify the correct domain ranked in the top two in about two thirds of cases. Bias docking improves predictive capacity only slightly in this scenario. We expect to integrate the presented strategy in the context of Target Pathogen database to make it available for the wide community of researchers working in antimicrobials discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yomi完成签到 ,获得积分10
1秒前
Du完成签到,获得积分10
1秒前
梁传众完成签到,获得积分10
2秒前
2秒前
笑点低冰淇淋完成签到,获得积分10
3秒前
勤奋世界发布了新的文献求助10
4秒前
卓儿完成签到,获得积分10
4秒前
8秒前
10秒前
11秒前
淡定的迎梦完成签到,获得积分10
12秒前
12秒前
12秒前
微风正好完成签到 ,获得积分10
13秒前
qian完成签到 ,获得积分10
13秒前
16秒前
时鹏飞完成签到 ,获得积分10
16秒前
16秒前
萌帆星完成签到 ,获得积分10
16秒前
tsuki完成签到 ,获得积分10
17秒前
summertny完成签到,获得积分10
17秒前
无花果应助今晚早点睡采纳,获得10
18秒前
书记发布了新的文献求助10
18秒前
溺水的闲鱼关注了科研通微信公众号
18秒前
蓝愿完成签到,获得积分10
18秒前
帽子戏法发布了新的文献求助10
18秒前
炸毛可乐发布了新的文献求助10
20秒前
手拿大炮完成签到 ,获得积分10
20秒前
Jiayi完成签到 ,获得积分10
21秒前
科研通AI6应助Alizmee采纳,获得10
21秒前
ding应助Alizmee采纳,获得10
21秒前
21秒前
22秒前
天天快乐应助科研通管家采纳,获得10
22秒前
今后应助科研通管家采纳,获得10
22秒前
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得30
22秒前
星辰大海应助科研通管家采纳,获得10
22秒前
烟花应助科研通管家采纳,获得10
22秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384189
求助须知:如何正确求助?哪些是违规求助? 4507129
关于积分的说明 14026881
捐赠科研通 4416718
什么是DOI,文献DOI怎么找? 2426108
邀请新用户注册赠送积分活动 1418922
关于科研通互助平台的介绍 1397208