From drugs to targets: Reverse engineering the virtual screening process on a proteomic scale

虚拟筛选 优先次序 药物发现 计算机科学 计算生物学 化学相似性 表型筛选 适用范围 高通量筛选 鉴定(生物学) 药品 药物开发 生化工程 数据挖掘 机器学习 生物信息学 生物 聚类分析 表型 数量结构-活动关系 遗传学 工程类 药理学 基因 植物 管理科学
作者
Gustavo Schottlender,Juan Manuel Prieto,Miranda C. Palumbo,Florencia Castello,Federico Serral,Ezequiel Sosa,Adrián G. Turjanski,Marcelo A. Martí,Darío Fernández Do Porto
出处
期刊:Frontiers in drug discovery [Frontiers Media SA]
卷期号:2 被引量:4
标识
DOI:10.3389/fddsv.2022.969983
摘要

Phenotypic screening is a powerful technique that allowed the discovery of antimicrobials to fight infectious diseases considered deadly less than a century ago. In high throughput phenotypic screening assays, thousands of compounds are tested for their capacity to inhibit microbial growth in-vitro . After an active compound is found, identifying the molecular target is the next step. Knowing the specific target is key for understanding its mechanism of action, and essential for future drug development. Moreover, this knowledge allows drug developers to design new generations of drugs with increased efficacy and reduced side effects. However, target identification for a known active compound is usually a very difficult task. In the present work, we present a powerful reverse virtual screening strategy, that can help researchers working in the drug discovery field, to predict a set of putative targets for a compound known to exhibit antimicrobial effects. The strategy combines chemical similarity methods, with target prioritization based on essentiality data, and molecular-docking. These steps can be tailored according to the researchers’ needs and pathogen’s available information. Our results show that using only the chemical similarity approach, this method is capable of retrieving potential targets for half of tested compounds. The results show that even for a low chemical similarity threshold whenever domains are retrieved, the correct domain is among those retrieved in more than 80% of the queries. Prioritizing targets by an essentiality criteria allows us to further reduce, up to 3–4 times, the number of putative targets. Lastly, docking is able to identify the correct domain ranked in the top two in about two thirds of cases. Bias docking improves predictive capacity only slightly in this scenario. We expect to integrate the presented strategy in the context of Target Pathogen database to make it available for the wide community of researchers working in antimicrobials discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
achris发布了新的文献求助10
刚刚
1秒前
龙须酥完成签到,获得积分10
1秒前
杨枝甘露完成签到,获得积分20
2秒前
2秒前
宋鸣鸣发布了新的文献求助10
2秒前
jiujiu发布了新的文献求助10
2秒前
shijingling完成签到 ,获得积分10
3秒前
研友_nVNBVn发布了新的文献求助30
3秒前
1234完成签到,获得积分10
4秒前
yao发布了新的文献求助10
4秒前
Jackson_Cai发布了新的文献求助10
4秒前
朝菌完成签到,获得积分10
4秒前
苏su关注了科研通微信公众号
4秒前
悠嘻嘻发布了新的文献求助10
5秒前
5秒前
aldehyde应助林安笙采纳,获得10
5秒前
科研通AI6应助挽倾颜采纳,获得10
6秒前
徐阳发布了新的文献求助10
6秒前
centlay发布了新的文献求助10
7秒前
7秒前
杨枝甘露发布了新的文献求助10
7秒前
7秒前
魏开铭完成签到,获得积分10
7秒前
8秒前
科研通AI6应助心灵美飞莲采纳,获得10
8秒前
超级的幻然完成签到,获得积分10
8秒前
9秒前
9秒前
小二郎应助achris采纳,获得10
9秒前
完美山菡完成签到,获得积分10
9秒前
9秒前
机智初夏发布了新的文献求助10
10秒前
迎风映雪完成签到 ,获得积分10
10秒前
个性太英完成签到,获得积分20
10秒前
10秒前
11秒前
11秒前
11秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238122
求助须知:如何正确求助?哪些是违规求助? 4405802
关于积分的说明 13711768
捐赠科研通 4274090
什么是DOI,文献DOI怎么找? 2345419
邀请新用户注册赠送积分活动 1342496
关于科研通互助平台的介绍 1300416