From drugs to targets: Reverse engineering the virtual screening process on a proteomic scale

虚拟筛选 优先次序 药物发现 计算机科学 计算生物学 化学相似性 表型筛选 适用范围 高通量筛选 鉴定(生物学) 药品 药物开发 生化工程 数据挖掘 机器学习 生物信息学 生物 聚类分析 表型 数量结构-活动关系 遗传学 工程类 药理学 基因 植物 管理科学
作者
Gustavo Schottlender,Juan Manuel Prieto,Miranda C. Palumbo,Florencia Castello,Federico Serral,Ezequiel Sosa,Adrián G. Turjanski,Marcelo A. Martí,Darío Fernández Do Porto
出处
期刊:Frontiers in drug discovery [Frontiers Media SA]
卷期号:2 被引量:4
标识
DOI:10.3389/fddsv.2022.969983
摘要

Phenotypic screening is a powerful technique that allowed the discovery of antimicrobials to fight infectious diseases considered deadly less than a century ago. In high throughput phenotypic screening assays, thousands of compounds are tested for their capacity to inhibit microbial growth in-vitro . After an active compound is found, identifying the molecular target is the next step. Knowing the specific target is key for understanding its mechanism of action, and essential for future drug development. Moreover, this knowledge allows drug developers to design new generations of drugs with increased efficacy and reduced side effects. However, target identification for a known active compound is usually a very difficult task. In the present work, we present a powerful reverse virtual screening strategy, that can help researchers working in the drug discovery field, to predict a set of putative targets for a compound known to exhibit antimicrobial effects. The strategy combines chemical similarity methods, with target prioritization based on essentiality data, and molecular-docking. These steps can be tailored according to the researchers’ needs and pathogen’s available information. Our results show that using only the chemical similarity approach, this method is capable of retrieving potential targets for half of tested compounds. The results show that even for a low chemical similarity threshold whenever domains are retrieved, the correct domain is among those retrieved in more than 80% of the queries. Prioritizing targets by an essentiality criteria allows us to further reduce, up to 3–4 times, the number of putative targets. Lastly, docking is able to identify the correct domain ranked in the top two in about two thirds of cases. Bias docking improves predictive capacity only slightly in this scenario. We expect to integrate the presented strategy in the context of Target Pathogen database to make it available for the wide community of researchers working in antimicrobials discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YUKONG发布了新的文献求助10
刚刚
QR完成签到,获得积分10
刚刚
1秒前
1秒前
ZJPPPP完成签到,获得积分10
3秒前
4秒前
5秒前
bonnie完成签到,获得积分10
5秒前
执城完成签到,获得积分10
5秒前
7秒前
小白一号应助感动归尘采纳,获得10
7秒前
充电宝应助学术小子采纳,获得10
7秒前
8秒前
三月聚粮应助小半采纳,获得20
8秒前
wtdai完成签到,获得积分10
9秒前
拼搏惜金完成签到,获得积分10
9秒前
wanghao完成签到 ,获得积分10
9秒前
Jasper应助爱笑的枫叶采纳,获得10
10秒前
jam发布了新的文献求助10
11秒前
12秒前
12秒前
长孙归尘发布了新的文献求助10
13秒前
科研通AI2S应助gnr2000采纳,获得10
13秒前
SemiConduAG完成签到,获得积分10
14秒前
onlyan发布了新的文献求助10
15秒前
16秒前
囧囧应助单纯的思松采纳,获得30
16秒前
zw完成签到,获得积分10
17秒前
17秒前
田様应助wx采纳,获得10
18秒前
18秒前
Owen应助执城采纳,获得10
19秒前
123应助酸奶麦片儿采纳,获得20
19秒前
橘猫不长橘毛完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
yihuifa完成签到 ,获得积分10
20秒前
20秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312954
求助须知:如何正确求助?哪些是违规求助? 2945353
关于积分的说明 8524838
捐赠科研通 2621121
什么是DOI,文献DOI怎么找? 1433353
科研通“疑难数据库(出版商)”最低求助积分说明 664936
邀请新用户注册赠送积分活动 650388