From drugs to targets: Reverse engineering the virtual screening process on a proteomic scale

虚拟筛选 优先次序 药物发现 计算机科学 计算生物学 化学相似性 表型筛选 适用范围 高通量筛选 鉴定(生物学) 药品 药物开发 生化工程 数据挖掘 机器学习 生物信息学 生物 聚类分析 表型 数量结构-活动关系 遗传学 工程类 药理学 基因 植物 管理科学
作者
Gustavo Schottlender,Juan Manuel Prieto,Miranda C. Palumbo,Florencia Castello,Federico Serral,Ezequiel Sosa,Adrián G. Turjanski,Marcelo A. Martí,Darío Fernández Do Porto
出处
期刊:Frontiers in drug discovery [Frontiers Media SA]
卷期号:2 被引量:4
标识
DOI:10.3389/fddsv.2022.969983
摘要

Phenotypic screening is a powerful technique that allowed the discovery of antimicrobials to fight infectious diseases considered deadly less than a century ago. In high throughput phenotypic screening assays, thousands of compounds are tested for their capacity to inhibit microbial growth in-vitro . After an active compound is found, identifying the molecular target is the next step. Knowing the specific target is key for understanding its mechanism of action, and essential for future drug development. Moreover, this knowledge allows drug developers to design new generations of drugs with increased efficacy and reduced side effects. However, target identification for a known active compound is usually a very difficult task. In the present work, we present a powerful reverse virtual screening strategy, that can help researchers working in the drug discovery field, to predict a set of putative targets for a compound known to exhibit antimicrobial effects. The strategy combines chemical similarity methods, with target prioritization based on essentiality data, and molecular-docking. These steps can be tailored according to the researchers’ needs and pathogen’s available information. Our results show that using only the chemical similarity approach, this method is capable of retrieving potential targets for half of tested compounds. The results show that even for a low chemical similarity threshold whenever domains are retrieved, the correct domain is among those retrieved in more than 80% of the queries. Prioritizing targets by an essentiality criteria allows us to further reduce, up to 3–4 times, the number of putative targets. Lastly, docking is able to identify the correct domain ranked in the top two in about two thirds of cases. Bias docking improves predictive capacity only slightly in this scenario. We expect to integrate the presented strategy in the context of Target Pathogen database to make it available for the wide community of researchers working in antimicrobials discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
troye完成签到,获得积分10
1秒前
lxcy0612完成签到,获得积分10
2秒前
2秒前
cyn完成签到,获得积分10
3秒前
搜集达人应助微笑梦旋采纳,获得10
3秒前
XIVV发布了新的文献求助10
3秒前
20240901完成签到,获得积分10
4秒前
4秒前
科目三应助唧唧咕咕采纳,获得10
4秒前
香蕉觅云应助lina采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
润物无声完成签到,获得积分10
5秒前
Ava应助llllly采纳,获得10
5秒前
牛不可完成签到,获得积分10
5秒前
chen发布了新的文献求助20
6秒前
传奇3应助5High_0采纳,获得10
6秒前
troye发布了新的文献求助10
6秒前
骑着蚂蚁追大象完成签到,获得积分10
7秒前
安医清嘉完成签到,获得积分10
7秒前
小马甲应助ChuangyangLi采纳,获得10
8秒前
小刘完成签到,获得积分10
8秒前
科目三应助南烟采纳,获得10
8秒前
LYNB完成签到 ,获得积分10
8秒前
8秒前
刘强发布了新的文献求助10
8秒前
小木没有烦恼完成签到 ,获得积分10
8秒前
9秒前
10秒前
枫林一叶下完成签到,获得积分20
10秒前
BBrian完成签到,获得积分10
10秒前
苏苏发布了新的文献求助10
10秒前
QY发布了新的文献求助10
11秒前
宝藏完成签到,获得积分10
11秒前
JJ完成签到,获得积分10
12秒前
香蕉觅云应助刘强采纳,获得10
12秒前
12秒前
汉堡包应助迷人不凡采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4860510
求助须知:如何正确求助?哪些是违规求助? 4155428
关于积分的说明 12879353
捐赠科研通 3906915
什么是DOI,文献DOI怎么找? 2146343
邀请新用户注册赠送积分活动 1165309
关于科研通互助平台的介绍 1067482