CBAM + ASFF-YOLOXs: An improved YOLOXs for guiding agronomic operation based on the identification of key growth stages of lettuce

多样性(控制论) 钥匙(锁) 农业 过程(计算) 鉴定(生物学) 农业工程 比例(比率) 计算机科学 工程类 人工智能 计算机安全 地理 植物 生物 地图学 考古 操作系统
作者
Pan Zhang,Daoliang Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:203: 107491-107491 被引量:12
标识
DOI:10.1016/j.compag.2022.107491
摘要

To the optimal time to conduct farming operations in the traditional agricultural production process mainly depends on human observation and planting experience, which is time-consuming and laborious, and makes it easy to miss the best agricultural operation opportunities. In this study, our main objective is to accurately detect the key growth stages of lettuce to guide the timely implementation of corresponding agricultural operations. Firstly, the dataset was collected for the growth stage with important agricultural operations in the growth process of multi-variety lettuce, to lay the data foundation for the construction of the model. Secondly, considering the difference in plant growth, we compared many methods and selected the optimal modeling method YOLOXs to identify the key growth stages of multi-variety lettuce (mAP = 98.75 %). Finally, to ensure the applicability of the detection model in complex agricultural scenes, we tried to improve the effect of YOLOXs by three attention mechanisms and one multi-scale feature fusion method, and proposed a new method CBAM + ASFF-YOLOXs (mAP = 99.04 %). The results showed that this method is expected to replace human eye observation and experience in planting, to provide accurate technical feedback on relevant agricultural operation time, and to provide technical support for the unmanned operation of agriculture. At the same time, the limitations, challenges, and prospects of this method are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助昴宿缉拿采纳,获得10
刚刚
乐乐应助坨坨西州采纳,获得10
1秒前
Nice2cu发布了新的文献求助10
1秒前
spring完成签到 ,获得积分10
1秒前
阿北完成签到 ,获得积分10
1秒前
化合物来发布了新的文献求助10
1秒前
大模型应助俭朴的半雪采纳,获得10
2秒前
所所应助李朝富采纳,获得10
2秒前
Orange应助大麦迪采纳,获得10
2秒前
bbbui发布了新的文献求助10
2秒前
Breeze发布了新的文献求助10
3秒前
材化小将军完成签到,获得积分10
3秒前
3秒前
汉堡包应助大气元彤采纳,获得10
3秒前
无花果应助开朗的戎采纳,获得10
3秒前
章半仙发布了新的文献求助10
3秒前
pumpkin完成签到,获得积分10
4秒前
QiJiLuLu完成签到,获得积分10
4秒前
4秒前
辛勤的刚完成签到,获得积分10
4秒前
4秒前
Lucas应助河北大学采纳,获得10
4秒前
4秒前
4秒前
茶茶完成签到,获得积分20
5秒前
5秒前
苹果纲发布了新的文献求助10
6秒前
6秒前
花藏影发布了新的文献求助30
6秒前
坦率寒安完成签到,获得积分10
7秒前
落寞飞烟完成签到,获得积分10
7秒前
7秒前
123完成签到,获得积分10
8秒前
8秒前
Lucas应助科研小蔡采纳,获得10
8秒前
8秒前
拓跋半雪完成签到,获得积分10
8秒前
慕青应助体贴的绿茶采纳,获得10
9秒前
额发发生发顺丰完成签到,获得积分20
9秒前
10秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441016
求助须知:如何正确求助?哪些是违规求助? 3037387
关于积分的说明 8968794
捐赠科研通 2725927
什么是DOI,文献DOI怎么找? 1495136
科研通“疑难数据库(出版商)”最低求助积分说明 691137
邀请新用户注册赠送积分活动 687879