已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fusion attention mechanism bidirectional LSTM for short-term traffic flow prediction

自回归积分移动平均 计算机科学 人工智能 流量(计算机网络) 深度学习 时间序列 期限(时间) 数据挖掘 智能交通系统 人工神经网络 机器学习 预警系统 融合机制 融合 工程类 脂质双层融合 语言学 物理 电信 哲学 土木工程 量子力学 计算机安全
作者
Zhihong Li,Xu Han,Xiuli Gao,Zinan Wang,Wangtu Xu
出处
期刊:Journal of Intelligent Transportation Systems [Taylor & Francis]
卷期号:28 (4): 511-524 被引量:20
标识
DOI:10.1080/15472450.2022.2142049
摘要

Short term forecasting is essential and challenging in time series data analysis for traffic flow research. A novel deep learning architecture on short-term traffic flow prediction was presented in this work. In conventional model-driven prediction method, a critical deviation in prediction accuracy was occurred in face of large fluctuations in traffic flow, while machine and deep learning-based approaches performed well in accuracy study than conventional regression-based models. Moreover, a fusion attention mechanism bidirectional long short-term memory model (ATT-BiLSTM) was proposed due to its bidirectional LSTM (BiLSTM) and attention mechanism units. The model not only dealt with forward and backward dependencies in time series data, but also integrated the attention mechanism to improve the ability on key information representation. The BiLSTM layer was exploited to capture bidirectional temporal and spatial features dependencies from historical data. The proposed model was also trained and validated using freeway toll datasets from Humen Bridge. The results showed that compared with ARIMA and SVR models, the indicators of the proposed model have been significantly improved. The ablation experiments were conducted to evaluate the role of the attention mechanism module. Compared with BiLSTM, CNN and 1DCNN-ATT-BiLSTM models, the MAE, RMSE and MAPE indexes of proposed model were reduced by 0.6–5.9%, 1.6–4.7% and 0.6–22.8%, respectively. More accurate predictions were obtained by the proposed model. The research results are of great significance to improve the level of traffic management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
丘比特应助Yuan采纳,获得10
3秒前
晓筠发布了新的文献求助10
3秒前
Shan完成签到,获得积分10
4秒前
4秒前
Juno完成签到,获得积分10
6秒前
英姑应助CHAIZH采纳,获得10
6秒前
科目三应助鳗鱼绿蝶采纳,获得10
8秒前
9秒前
深情安青应助yongjie采纳,获得10
9秒前
shengchang88发布了新的文献求助30
10秒前
10秒前
科目三应助Shan采纳,获得10
11秒前
11秒前
15秒前
16秒前
17秒前
17秒前
李健的粉丝团团长应助qiu采纳,获得10
17秒前
科研通AI5应助OuO采纳,获得10
19秒前
gluwater完成签到,获得积分20
19秒前
鳗鱼绿蝶发布了新的文献求助10
20秒前
小马甲应助shengchang88采纳,获得10
20秒前
精明松思发布了新的文献求助10
21秒前
Yuan发布了新的文献求助10
22秒前
22秒前
yongjie发布了新的文献求助10
22秒前
ghn123456789完成签到,获得积分10
22秒前
善学以致用应助Juno采纳,获得10
25秒前
我的文献呢应助xingcheng采纳,获得30
25秒前
春天发布了新的文献求助10
26秒前
guozizi发布了新的文献求助30
27秒前
丰富的芯发布了新的文献求助10
28秒前
28秒前
shengchang88完成签到,获得积分10
28秒前
28秒前
123发布了新的文献求助10
29秒前
54zxy发布了新的文献求助10
31秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968009
求助须知:如何正确求助?哪些是违规求助? 3513050
关于积分的说明 11166132
捐赠科研通 3248187
什么是DOI,文献DOI怎么找? 1794124
邀请新用户注册赠送积分活动 874880
科研通“疑难数据库(出版商)”最低求助积分说明 804610