Fusion attention mechanism bidirectional LSTM for short-term traffic flow prediction

自回归积分移动平均 计算机科学 人工智能 流量(计算机网络) 深度学习 时间序列 期限(时间) 数据挖掘 智能交通系统 人工神经网络 机器学习 预警系统 融合机制 融合 工程类 脂质双层融合 语言学 物理 电信 哲学 土木工程 量子力学 计算机安全
作者
Zhihong Li,Xu Han,Xiuli Gao,Zinan Wang,Wangtu Xu
出处
期刊:Journal of Intelligent Transportation Systems [Informa]
卷期号:28 (4): 511-524 被引量:20
标识
DOI:10.1080/15472450.2022.2142049
摘要

Short term forecasting is essential and challenging in time series data analysis for traffic flow research. A novel deep learning architecture on short-term traffic flow prediction was presented in this work. In conventional model-driven prediction method, a critical deviation in prediction accuracy was occurred in face of large fluctuations in traffic flow, while machine and deep learning-based approaches performed well in accuracy study than conventional regression-based models. Moreover, a fusion attention mechanism bidirectional long short-term memory model (ATT-BiLSTM) was proposed due to its bidirectional LSTM (BiLSTM) and attention mechanism units. The model not only dealt with forward and backward dependencies in time series data, but also integrated the attention mechanism to improve the ability on key information representation. The BiLSTM layer was exploited to capture bidirectional temporal and spatial features dependencies from historical data. The proposed model was also trained and validated using freeway toll datasets from Humen Bridge. The results showed that compared with ARIMA and SVR models, the indicators of the proposed model have been significantly improved. The ablation experiments were conducted to evaluate the role of the attention mechanism module. Compared with BiLSTM, CNN and 1DCNN-ATT-BiLSTM models, the MAE, RMSE and MAPE indexes of proposed model were reduced by 0.6–5.9%, 1.6–4.7% and 0.6–22.8%, respectively. More accurate predictions were obtained by the proposed model. The research results are of great significance to improve the level of traffic management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shuo发布了新的文献求助10
刚刚
梅森发布了新的文献求助10
刚刚
刚刚
背后思卉应助LX采纳,获得10
刚刚
1秒前
wang完成签到,获得积分10
1秒前
abrin08完成签到,获得积分10
1秒前
星河完成签到,获得积分10
2秒前
2秒前
Akim应助自觉的溪灵采纳,获得10
3秒前
科研小能手完成签到,获得积分10
3秒前
虞无声发布了新的文献求助10
3秒前
4秒前
Lucy发布了新的文献求助10
4秒前
5秒前
zyx完成签到 ,获得积分10
6秒前
斯文败类应助MS903采纳,获得30
7秒前
无谓发布了新的文献求助10
7秒前
KK发布了新的文献求助10
7秒前
8秒前
Tao发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
吴陈完成签到,获得积分10
11秒前
11秒前
希望天下0贩的0应助wugkazh采纳,获得30
12秒前
萧寒发布了新的文献求助10
12秒前
12秒前
manbo发布了新的文献求助10
12秒前
WYP完成签到,获得积分10
12秒前
无谓完成签到,获得积分10
13秒前
13秒前
青mu发布了新的文献求助10
14秒前
现代的寻雪完成签到,获得积分10
15秒前
immortel发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600893
求助须知:如何正确求助?哪些是违规求助? 4686444
关于积分的说明 14843995
捐赠科研通 4678825
什么是DOI,文献DOI怎么找? 2539074
邀请新用户注册赠送积分活动 1505973
关于科研通互助平台的介绍 1471241