Fusion attention mechanism bidirectional LSTM for short-term traffic flow prediction

自回归积分移动平均 计算机科学 人工智能 流量(计算机网络) 深度学习 时间序列 期限(时间) 数据挖掘 智能交通系统 人工神经网络 机器学习 预警系统 融合机制 融合 工程类 脂质双层融合 语言学 物理 电信 哲学 土木工程 量子力学 计算机安全
作者
Zhihong Li,Xu Han,Xiuli Gao,Zinan Wang,Wangtu Xu
出处
期刊:Journal of Intelligent Transportation Systems [Taylor & Francis]
卷期号:28 (4): 511-524 被引量:20
标识
DOI:10.1080/15472450.2022.2142049
摘要

Short term forecasting is essential and challenging in time series data analysis for traffic flow research. A novel deep learning architecture on short-term traffic flow prediction was presented in this work. In conventional model-driven prediction method, a critical deviation in prediction accuracy was occurred in face of large fluctuations in traffic flow, while machine and deep learning-based approaches performed well in accuracy study than conventional regression-based models. Moreover, a fusion attention mechanism bidirectional long short-term memory model (ATT-BiLSTM) was proposed due to its bidirectional LSTM (BiLSTM) and attention mechanism units. The model not only dealt with forward and backward dependencies in time series data, but also integrated the attention mechanism to improve the ability on key information representation. The BiLSTM layer was exploited to capture bidirectional temporal and spatial features dependencies from historical data. The proposed model was also trained and validated using freeway toll datasets from Humen Bridge. The results showed that compared with ARIMA and SVR models, the indicators of the proposed model have been significantly improved. The ablation experiments were conducted to evaluate the role of the attention mechanism module. Compared with BiLSTM, CNN and 1DCNN-ATT-BiLSTM models, the MAE, RMSE and MAPE indexes of proposed model were reduced by 0.6–5.9%, 1.6–4.7% and 0.6–22.8%, respectively. More accurate predictions were obtained by the proposed model. The research results are of great significance to improve the level of traffic management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助舒心的初露采纳,获得30
刚刚
2秒前
天天快乐应助负责从丹采纳,获得10
3秒前
3秒前
3秒前
俍璟完成签到 ,获得积分10
3秒前
湛刘佳完成签到,获得积分20
4秒前
沈妤完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
走走发布了新的文献求助10
7秒前
8秒前
沈妤发布了新的文献求助10
8秒前
瘦瘦怀亦发布了新的文献求助10
9秒前
9秒前
萧七七发布了新的文献求助10
10秒前
湛刘佳发布了新的文献求助10
10秒前
56jhjl完成签到,获得积分10
10秒前
亭曈发布了新的文献求助20
10秒前
雪白紫夏完成签到,获得积分10
11秒前
11秒前
脑洞疼应助姜苏婷采纳,获得10
11秒前
量子星尘发布了新的文献求助30
12秒前
12秒前
13秒前
14秒前
14秒前
14秒前
哇哈哈哈哈哈完成签到,获得积分10
15秒前
GSQ发布了新的文献求助10
15秒前
BIGDEEK发布了新的文献求助10
16秒前
热烈的马完成签到,获得积分10
16秒前
17秒前
胡胡完成签到 ,获得积分10
17秒前
CodeCraft应助平淡茈采纳,获得10
18秒前
19秒前
19秒前
DrYang发布了新的文献求助30
20秒前
孤巷的猫完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601334
求助须知:如何正确求助?哪些是违规求助? 4011026
关于积分的说明 12418353
捐赠科研通 3691054
什么是DOI,文献DOI怎么找? 2034817
邀请新用户注册赠送积分活动 1068116
科研通“疑难数据库(出版商)”最低求助积分说明 952689