Numerical modelling of the delamination in multi-layered ceramic capacitor during the thermal reflow process

材料科学 分层(地质) 复合材料 空隙(复合材料) 陶瓷电容器 电容器 环氧树脂 温度循环 陶瓷 强度因子 断裂力学 热的 电压 电气工程 生物 构造学 物理 工程类 古生物学 气象学 俯冲
作者
Fei Chong Ng,Aizat Abas,Mohamad Riduwan Ramli,Mohamad Fikri Mohd Sharif,Fakhrozi Che Ani
出处
期刊:Soldering & Surface Mount Technology [Emerald Publishing Limited]
卷期号:35 (3): 166-174 被引量:5
标识
DOI:10.1108/ssmt-03-2022-0017
摘要

Purpose This paper aims to study the interfacial delamination found in the boundary of the copper/copper-epoxy layers of a multi-layer ceramic capacitor. Design/methodology/approach The thermal reflow process of the capacitor assembly and the crack propagation from the initial micro voids presented in the boundary, and later manifested into delamination, were numerically simulated. Besides, the cross section of the capacitor assembly was inspected for delamination cracks and voids using a scanning electronic microscope. Findings Interfacial delamination in the boundary of copper/copper-epoxy layers was caused by the thermal mismatch and growth of micro voids during the thermal reflow process. The maximum deformation on the capacitor during reflow was 2.370 µm. It was found that a larger void would induce higher vicinity stress, mode I stress intensity factor, and crack elongation rate. Moreover, the crack extension increased with the exerted deformation until 0.3 µm, before saturating at the peak crack extension of around 0.078 µm. Practical implications The root cause of interfacial delamination issues in capacitors due to thermal reflow has been identified, and viable solutions proposed. These can eliminate the additional manufacturing cost and lead time incurred in identifying and tackling the issues; as well as benefit end-users, by promoting the electronic device reliability and performance. Originality/value To the best of the authors’ knowledge, the mechanism of delamination occurrence in a capacitor during has not been reported to date. The parametric variation analysis of the void size and deformation on the crack growth has never been conducted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南风发布了新的文献求助10
刚刚
s615发布了新的文献求助10
刚刚
1秒前
PhH完成签到 ,获得积分10
2秒前
宝宝言兼发布了新的文献求助10
5秒前
清心淡如水完成签到 ,获得积分10
5秒前
Awei发布了新的文献求助10
5秒前
fuje发布了新的文献求助10
6秒前
流年忆梦发布了新的文献求助10
7秒前
8秒前
小鱼儿发布了新的文献求助10
8秒前
smottom应助靳顺康采纳,获得10
8秒前
cleva发布了新的文献求助10
9秒前
9秒前
勤恳书包完成签到,获得积分10
9秒前
9秒前
11秒前
JYLLLLLL发布了新的文献求助10
11秒前
Good_小鬼完成签到,获得积分10
11秒前
科研通AI5应助大力飞扬采纳,获得10
11秒前
DD应助江健玲采纳,获得10
11秒前
张雷应助紫紫吃菠菜采纳,获得10
12秒前
沉默的文完成签到,获得积分10
12秒前
秃头小宝贝完成签到,获得积分10
13秒前
共享精神应助动人的凡霜采纳,获得10
13秒前
14秒前
雪白巨人完成签到,获得积分10
14秒前
1223发布了新的文献求助10
14秒前
科研鸟发布了新的文献求助10
16秒前
阮红亮完成签到,获得积分10
16秒前
研友_VZG7GZ应助知性的不凡采纳,获得10
17秒前
19秒前
20秒前
淡淡夕阳发布了新的文献求助10
21秒前
万能图书馆应助JYLLLLLL采纳,获得10
21秒前
21秒前
卷粉儿发布了新的文献求助80
24秒前
初衷未央发布了新的文献求助10
27秒前
wangwei完成签到 ,获得积分10
27秒前
burningzmz完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966458
求助须知:如何正确求助?哪些是违规求助? 3511927
关于积分的说明 11160884
捐赠科研通 3246684
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403