Image segmentation using deep learning for tongue diagnosis in traditional Chinese medicine

舌头 计算机科学 人工智能 分割 深度学习 图像分割 模式识别(心理学) 计算机视觉 图像(数学) 自然语言处理 医学 病理
作者
Dechao Xu,Yudong Yao,Lisheng Xu,Gang Xu,Yaochen Guo,Wei Qian
标识
DOI:10.1117/12.2656568
摘要

Deep learning has the advantages of high efficiency, high speed, high accuracy, and strong objectivity, and is widely used in the fields of pathology and laboratory diagnosis. The diagnostic techniques of traditional Chinese medicine are world-famous, and the four basic methods for diagnosing diseases, namely inspection, auscultation- olfaction, inquiry, and palpation, are collectively referred to as "four diagnostics". Tongue diagnosis is an important part of inspection, and it is also an effective diagnosis and treatment method for doctors to understand the changes of the patient's body through the tongue image. In order to realize automatic tongue diagnosis, one of the important tasks is to implement the automatic segmentation of tongue images. However, using feature engineering to segment tongue images requires a lot of work, and only hand-crafted features cannot represent the features of the tongue well. Therefore, this paper designs a tongue segmentation network (TSN). TSN consists of three parts: feature encoding extraction module, context-aware module and feature decoding module. This model can fully extract tongue feature vector and perform information fusion through context-aware module, so that Effectively segment the tongue from the image. Compared with various deep learning image segmentation methods, the TSN proposed in this paper achieves the best performance results with 97.20% mean intersection over union (mIoU) and 98.83% pixel accuracy (PA).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
freezing发布了新的文献求助10
1秒前
科目三应助Hahawang采纳,获得10
1秒前
wyt发布了新的文献求助10
3秒前
杨然完成签到 ,获得积分10
5秒前
CodeCraft应助自由的果汁采纳,获得10
5秒前
6秒前
8秒前
8秒前
勤恳的摩托完成签到,获得积分10
9秒前
9秒前
Yuna完成签到,获得积分10
9秒前
qq1640564935完成签到,获得积分10
10秒前
11秒前
ni完成签到,获得积分20
11秒前
12秒前
8R60d8应助长孙兰溪采纳,获得10
12秒前
13秒前
杳鸢应助临江仙采纳,获得10
13秒前
Hahawang发布了新的文献求助10
13秒前
初七发布了新的文献求助10
14秒前
围城完成签到,获得积分10
14秒前
杳鸢应助橘子味的风采纳,获得10
15秒前
嘟嘟嘟比巴卜关注了科研通微信公众号
18秒前
JZ完成签到,获得积分20
18秒前
freeaway完成签到,获得积分10
19秒前
19秒前
DC-CIK军团完成签到,获得积分10
19秒前
从容芮应助风趣的芝麻采纳,获得30
19秒前
肚皮完成签到 ,获得积分10
21秒前
wanci应助juju采纳,获得10
21秒前
21秒前
22秒前
22秒前
华仔应助DC-CIK军团采纳,获得10
23秒前
23秒前
平淡茈完成签到,获得积分10
23秒前
24秒前
宋佳发布了新的文献求助10
24秒前
长孙兰溪完成签到,获得积分10
24秒前
FashionBoy应助JZ采纳,获得50
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234164
求助须知:如何正确求助?哪些是违规求助? 2880584
关于积分的说明 8216048
捐赠科研通 2548171
什么是DOI,文献DOI怎么找? 1377575
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302