Image segmentation using deep learning for tongue diagnosis in traditional Chinese medicine

舌头 计算机科学 人工智能 分割 深度学习 图像分割 模式识别(心理学) 计算机视觉 图像(数学) 自然语言处理 医学 病理
作者
Dechao Xu,Yudong Yao,Lisheng Xu,Gang Xu,Yaochen Guo,Wei Qian
标识
DOI:10.1117/12.2656568
摘要

Deep learning has the advantages of high efficiency, high speed, high accuracy, and strong objectivity, and is widely used in the fields of pathology and laboratory diagnosis. The diagnostic techniques of traditional Chinese medicine are world-famous, and the four basic methods for diagnosing diseases, namely inspection, auscultation- olfaction, inquiry, and palpation, are collectively referred to as "four diagnostics". Tongue diagnosis is an important part of inspection, and it is also an effective diagnosis and treatment method for doctors to understand the changes of the patient's body through the tongue image. In order to realize automatic tongue diagnosis, one of the important tasks is to implement the automatic segmentation of tongue images. However, using feature engineering to segment tongue images requires a lot of work, and only hand-crafted features cannot represent the features of the tongue well. Therefore, this paper designs a tongue segmentation network (TSN). TSN consists of three parts: feature encoding extraction module, context-aware module and feature decoding module. This model can fully extract tongue feature vector and perform information fusion through context-aware module, so that Effectively segment the tongue from the image. Compared with various deep learning image segmentation methods, the TSN proposed in this paper achieves the best performance results with 97.20% mean intersection over union (mIoU) and 98.83% pixel accuracy (PA).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小霜降完成签到,获得积分10
1秒前
2秒前
虾滑完成签到,获得积分10
3秒前
56jhjl完成签到,获得积分10
3秒前
疯狂的夏天完成签到,获得积分10
6秒前
6秒前
iko完成签到,获得积分10
6秒前
wanci应助不安栾采纳,获得10
7秒前
阿徐呀完成签到,获得积分10
7秒前
整齐的小霜完成签到,获得积分10
7秒前
聪慧小霜应助Cici采纳,获得10
8秒前
9秒前
过时的绿凝完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
Jasper应助顺心火龙果采纳,获得10
11秒前
12秒前
蓝色的云发布了新的文献求助10
12秒前
dachengzi完成签到,获得积分10
13秒前
赘婿应助cbbb采纳,获得30
13秒前
赘婿应助he采纳,获得10
15秒前
hailey完成签到,获得积分10
15秒前
linmo发布了新的文献求助10
16秒前
16秒前
gds2021完成签到 ,获得积分10
16秒前
疯狂的炳发布了新的文献求助10
17秒前
木乙发布了新的文献求助10
19秒前
乐乐应助ZY采纳,获得10
19秒前
19秒前
19秒前
21秒前
1111完成签到,获得积分10
21秒前
华仔应助Misaki采纳,获得10
21秒前
充电宝应助细斟北斗采纳,获得10
21秒前
Jasper应助无限的半青采纳,获得10
22秒前
1111发布了新的文献求助10
23秒前
24秒前
肖肖发布了新的文献求助10
24秒前
静越发布了新的文献求助10
24秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970008
求助须知:如何正确求助?哪些是违规求助? 3514711
关于积分的说明 11175563
捐赠科研通 3250077
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804931