Modality-invariant temporal representation learning for multimodal sentiment classification

计算机科学 人工智能 模式 模态(人机交互) 分类 时间戳 不变(物理) 机器学习 模式识别(心理学) 数学 社会科学 数学物理 计算机安全 社会学
作者
Hao Sun,Бо Лю,Yen‐Wei Chen,Lanfen Lin
出处
期刊:Information Fusion [Elsevier]
卷期号:91: 504-514 被引量:13
标识
DOI:10.1016/j.inffus.2022.10.031
摘要

Multimodal sentiment classification is a notable research field that aims to refine sentimental information and classify the sentiment tendency from sequential multimodal data. Most existing sentimental recognition algorithms explore multimodal fusion schemes that achieve good performance. However, there are two key challenges to overcome. First, it is essential to effectively extract inter- and intra-modality features prior to fusion, while simultaneously reducing ambiguity. The second challenge is how to learn modality-invariant representations that capture the underlying similarities. In this paper, we present a modality-invariant temporal learning technique and a new gated inter-modality attention mechanism to overcome these issues. For the first challenge, our proposed gated inter-modality attention mechanism performs modality interactions and filters inconsistencies from multiple modalities in an adaptive manner. We also use parallel structures to learn more comprehensive sentimental information in pairs (i.e., acoustic and visual). In addition, to address the second problem, we treat each modality as a multivariate Gaussian distribution (considering each timestamp as a single Gaussian distribution) and use the KL divergence to capture the implicit temporal distribution-level similarities. These strategies are helpful in reducing domain shifts between different modalities and extracting effective sequential modality-invariant representations. We have conducted experiments on several public datasets (i.e., YouTube and MOUD) and the results show that our proposed method outperforms the state-of-the-art multimodal sentiment categorization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
思源应助HopeStar采纳,获得10
1秒前
2秒前
zqh完成签到,获得积分20
3秒前
3秒前
嘎嘎顺利发布了新的文献求助10
3秒前
按住心动完成签到,获得积分10
4秒前
星辰大海应助屁王采纳,获得10
4秒前
Owen应助彬彬采纳,获得10
5秒前
5秒前
Jasen完成签到,获得积分10
5秒前
轻轻地呼吸完成签到,获得积分10
5秒前
5秒前
明天更好发布了新的文献求助10
5秒前
6秒前
猪血糕yu完成签到,获得积分10
6秒前
通~发布了新的文献求助10
6秒前
7秒前
科研小垃圾完成签到,获得积分10
7秒前
8秒前
生动的煎蛋完成签到,获得积分10
8秒前
NexusExplorer应助marinemiao采纳,获得10
8秒前
CXS完成签到,获得积分10
9秒前
9秒前
9秒前
小郭完成签到,获得积分10
9秒前
9秒前
123发布了新的文献求助10
10秒前
NN123完成签到 ,获得积分10
10秒前
FFFFFFF应助艺玲采纳,获得10
11秒前
袁访天发布了新的文献求助10
11秒前
辇道增七完成签到,获得积分10
11秒前
11秒前
幽默的太阳完成签到 ,获得积分10
12秒前
12秒前
Nininni完成签到,获得积分10
12秒前
Tao完成签到,获得积分10
12秒前
12秒前
zqh发布了新的文献求助10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740