Modality-invariant temporal representation learning for multimodal sentiment classification

计算机科学 人工智能 模式 模态(人机交互) 分类 时间戳 不变(物理) 机器学习 模式识别(心理学) 数学 数学物理 社会科学 计算机安全 社会学
作者
Hao Sun,Бо Лю,Yen‐Wei Chen,Lanfen Lin
出处
期刊:Information Fusion [Elsevier]
卷期号:91: 504-514 被引量:13
标识
DOI:10.1016/j.inffus.2022.10.031
摘要

Multimodal sentiment classification is a notable research field that aims to refine sentimental information and classify the sentiment tendency from sequential multimodal data. Most existing sentimental recognition algorithms explore multimodal fusion schemes that achieve good performance. However, there are two key challenges to overcome. First, it is essential to effectively extract inter- and intra-modality features prior to fusion, while simultaneously reducing ambiguity. The second challenge is how to learn modality-invariant representations that capture the underlying similarities. In this paper, we present a modality-invariant temporal learning technique and a new gated inter-modality attention mechanism to overcome these issues. For the first challenge, our proposed gated inter-modality attention mechanism performs modality interactions and filters inconsistencies from multiple modalities in an adaptive manner. We also use parallel structures to learn more comprehensive sentimental information in pairs (i.e., acoustic and visual). In addition, to address the second problem, we treat each modality as a multivariate Gaussian distribution (considering each timestamp as a single Gaussian distribution) and use the KL divergence to capture the implicit temporal distribution-level similarities. These strategies are helpful in reducing domain shifts between different modalities and extracting effective sequential modality-invariant representations. We have conducted experiments on several public datasets (i.e., YouTube and MOUD) and the results show that our proposed method outperforms the state-of-the-art multimodal sentiment categorization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乐观安蕾发布了新的文献求助10
3秒前
3秒前
5秒前
hhg发布了新的文献求助10
5秒前
科研通AI2S应助小朋友采纳,获得10
5秒前
欢喜发卡完成签到,获得积分20
6秒前
英姑应助欢喜发卡采纳,获得10
8秒前
学习完成签到,获得积分10
10秒前
菜狗发布了新的文献求助10
10秒前
英姑应助月亮采纳,获得10
10秒前
11秒前
英俊的铭应助hhg采纳,获得10
13秒前
13秒前
14秒前
oceanao应助木木酱采纳,获得10
15秒前
科研通AI2S应助胡思乱想采纳,获得10
16秒前
16秒前
16秒前
16秒前
田様应助多情的映波采纳,获得30
17秒前
孤独小震完成签到,获得积分20
17秒前
WRZ完成签到 ,获得积分10
18秒前
zp发布了新的文献求助10
18秒前
菜狗完成签到,获得积分10
20秒前
孤独小震发布了新的文献求助10
21秒前
烟花应助科研通管家采纳,获得10
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
tdd应助科研通管家采纳,获得20
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
月亮发布了新的文献求助10
23秒前
23秒前
hawaii66发布了新的文献求助30
23秒前
25秒前
淡然子轩完成签到,获得积分20
25秒前
J.发布了新的文献求助10
25秒前
arabidopsis完成签到,获得积分10
26秒前
个性的帽子完成签到,获得积分10
26秒前
26秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157400
求助须知:如何正确求助?哪些是违规求助? 2808877
关于积分的说明 7878622
捐赠科研通 2467207
什么是DOI,文献DOI怎么找? 1313264
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919