Modality-invariant temporal representation learning for multimodal sentiment classification

计算机科学 人工智能 模式 模态(人机交互) 分类 时间戳 不变(物理) 机器学习 模式识别(心理学) 数学 社会科学 数学物理 计算机安全 社会学
作者
Hao Sun,Jiaqing Liu,Yen‐Wei Chen,Lanfen Lin
出处
期刊:Information Fusion [Elsevier BV]
卷期号:91: 504-514 被引量:25
标识
DOI:10.1016/j.inffus.2022.10.031
摘要

Multimodal sentiment classification is a notable research field that aims to refine sentimental information and classify the sentiment tendency from sequential multimodal data. Most existing sentimental recognition algorithms explore multimodal fusion schemes that achieve good performance. However, there are two key challenges to overcome. First, it is essential to effectively extract inter- and intra-modality features prior to fusion, while simultaneously reducing ambiguity. The second challenge is how to learn modality-invariant representations that capture the underlying similarities. In this paper, we present a modality-invariant temporal learning technique and a new gated inter-modality attention mechanism to overcome these issues. For the first challenge, our proposed gated inter-modality attention mechanism performs modality interactions and filters inconsistencies from multiple modalities in an adaptive manner. We also use parallel structures to learn more comprehensive sentimental information in pairs (i.e., acoustic and visual). In addition, to address the second problem, we treat each modality as a multivariate Gaussian distribution (considering each timestamp as a single Gaussian distribution) and use the KL divergence to capture the implicit temporal distribution-level similarities. These strategies are helpful in reducing domain shifts between different modalities and extracting effective sequential modality-invariant representations. We have conducted experiments on several public datasets (i.e., YouTube and MOUD) and the results show that our proposed method outperforms the state-of-the-art multimodal sentiment categorization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李星发布了新的文献求助10
刚刚
junn发布了新的文献求助10
刚刚
1秒前
爆米花应助小6s采纳,获得10
1秒前
1秒前
研友_VZG7GZ应助机灵白桃采纳,获得10
3秒前
山山完成签到,获得积分10
3秒前
3秒前
3秒前
现代发布了新的文献求助10
3秒前
罗健完成签到 ,获得积分10
3秒前
多肉丸子完成签到,获得积分10
3秒前
4秒前
皓月星辰发布了新的文献求助10
4秒前
4秒前
bkagyin应助雪糕采纳,获得10
4秒前
4秒前
符双双发布了新的文献求助20
5秒前
桐桐应助dudu采纳,获得10
5秒前
lizzy发布了新的文献求助10
5秒前
6秒前
KevinDante发布了新的文献求助10
6秒前
orixero应助小米采纳,获得10
6秒前
7秒前
7秒前
脑洞疼应助沸腾鱼采纳,获得10
7秒前
李星完成签到,获得积分20
7秒前
脑洞疼应助嘻嘻采纳,获得10
8秒前
bai发布了新的文献求助10
8秒前
9秒前
zhang发布了新的文献求助30
9秒前
tangyuan发布了新的文献求助10
9秒前
Hello应助纷飞采纳,获得20
9秒前
爆美发布了新的文献求助10
10秒前
毛豆完成签到,获得积分0
10秒前
羊咩咩完成签到 ,获得积分10
10秒前
10秒前
NeoWu发布了新的文献求助10
10秒前
11秒前
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002