Modality-invariant temporal representation learning for multimodal sentiment classification

计算机科学 人工智能 模式 模态(人机交互) 分类 时间戳 不变(物理) 机器学习 模式识别(心理学) 数学 社会科学 数学物理 计算机安全 社会学
作者
Hao Sun,Jiaqing Liu,Yen‐Wei Chen,Lanfen Lin
出处
期刊:Information Fusion [Elsevier BV]
卷期号:91: 504-514 被引量:25
标识
DOI:10.1016/j.inffus.2022.10.031
摘要

Multimodal sentiment classification is a notable research field that aims to refine sentimental information and classify the sentiment tendency from sequential multimodal data. Most existing sentimental recognition algorithms explore multimodal fusion schemes that achieve good performance. However, there are two key challenges to overcome. First, it is essential to effectively extract inter- and intra-modality features prior to fusion, while simultaneously reducing ambiguity. The second challenge is how to learn modality-invariant representations that capture the underlying similarities. In this paper, we present a modality-invariant temporal learning technique and a new gated inter-modality attention mechanism to overcome these issues. For the first challenge, our proposed gated inter-modality attention mechanism performs modality interactions and filters inconsistencies from multiple modalities in an adaptive manner. We also use parallel structures to learn more comprehensive sentimental information in pairs (i.e., acoustic and visual). In addition, to address the second problem, we treat each modality as a multivariate Gaussian distribution (considering each timestamp as a single Gaussian distribution) and use the KL divergence to capture the implicit temporal distribution-level similarities. These strategies are helpful in reducing domain shifts between different modalities and extracting effective sequential modality-invariant representations. We have conducted experiments on several public datasets (i.e., YouTube and MOUD) and the results show that our proposed method outperforms the state-of-the-art multimodal sentiment categorization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Deng发布了新的文献求助10
2秒前
莫名完成签到,获得积分10
3秒前
5秒前
超人研究生完成签到,获得积分10
7秒前
7秒前
科目三应助南国之霄采纳,获得10
8秒前
8秒前
8秒前
完美世界应助来福萨克斯采纳,获得10
10秒前
10秒前
核桃应助2499297293采纳,获得10
11秒前
852应助一投就中采纳,获得10
12秒前
13秒前
13秒前
醉翁发布了新的文献求助10
13秒前
17秒前
18秒前
名字是乱码完成签到,获得积分20
18秒前
18秒前
困困困发布了新的文献求助30
18秒前
sophiemore完成签到,获得积分10
19秒前
深水中的阳光完成签到,获得积分10
22秒前
个性凡儿完成签到,获得积分10
22秒前
Tourist完成签到 ,获得积分10
23秒前
Ctom给Ivy的求助进行了留言
23秒前
惠cherry发布了新的文献求助10
24秒前
任妮发布了新的文献求助10
24秒前
彭于晏应助xmyyy采纳,获得10
25秒前
杨超肥关注了科研通微信公众号
25秒前
25秒前
asd_1应助廖少跑不快采纳,获得10
26秒前
彭于晏应助胖星つ°采纳,获得10
27秒前
27秒前
aq完成签到,获得积分10
27秒前
27秒前
28秒前
29秒前
TT完成签到,获得积分10
29秒前
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538689
求助须知:如何正确求助?哪些是违规求助? 3973052
关于积分的说明 12307737
捐赠科研通 3639863
什么是DOI,文献DOI怎么找? 2004161
邀请新用户注册赠送积分活动 1039575
科研通“疑难数据库(出版商)”最低求助积分说明 928856