Modality-invariant temporal representation learning for multimodal sentiment classification

计算机科学 人工智能 模式 模态(人机交互) 分类 时间戳 不变(物理) 机器学习 模式识别(心理学) 数学 社会科学 数学物理 计算机安全 社会学
作者
Hao Sun,Jiaqing Liu,Yen‐Wei Chen,Lanfen Lin
出处
期刊:Information Fusion [Elsevier]
卷期号:91: 504-514 被引量:25
标识
DOI:10.1016/j.inffus.2022.10.031
摘要

Multimodal sentiment classification is a notable research field that aims to refine sentimental information and classify the sentiment tendency from sequential multimodal data. Most existing sentimental recognition algorithms explore multimodal fusion schemes that achieve good performance. However, there are two key challenges to overcome. First, it is essential to effectively extract inter- and intra-modality features prior to fusion, while simultaneously reducing ambiguity. The second challenge is how to learn modality-invariant representations that capture the underlying similarities. In this paper, we present a modality-invariant temporal learning technique and a new gated inter-modality attention mechanism to overcome these issues. For the first challenge, our proposed gated inter-modality attention mechanism performs modality interactions and filters inconsistencies from multiple modalities in an adaptive manner. We also use parallel structures to learn more comprehensive sentimental information in pairs (i.e., acoustic and visual). In addition, to address the second problem, we treat each modality as a multivariate Gaussian distribution (considering each timestamp as a single Gaussian distribution) and use the KL divergence to capture the implicit temporal distribution-level similarities. These strategies are helpful in reducing domain shifts between different modalities and extracting effective sequential modality-invariant representations. We have conducted experiments on several public datasets (i.e., YouTube and MOUD) and the results show that our proposed method outperforms the state-of-the-art multimodal sentiment categorization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzy发布了新的文献求助10
刚刚
研友_VZG7GZ应助Sugarhm采纳,获得10
1秒前
啊啊啊完成签到,获得积分10
5秒前
tingtingliuok完成签到,获得积分20
6秒前
夏小舟完成签到,获得积分10
7秒前
7秒前
昔日发布了新的文献求助10
7秒前
科研通AI2S应助unyield采纳,获得10
8秒前
科研通AI6应助ppp采纳,获得100
9秒前
Oli完成签到,获得积分10
10秒前
10秒前
毛毛完成签到 ,获得积分10
10秒前
sam发布了新的文献求助20
10秒前
大黑完成签到 ,获得积分10
12秒前
852应助Hhh采纳,获得10
12秒前
珍珠红茶发布了新的文献求助10
13秒前
13秒前
14秒前
linda发布了新的文献求助30
14秒前
SciGPT应助黄静采纳,获得30
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
Oli发布了新的文献求助30
16秒前
在水一方应助foxuan采纳,获得10
17秒前
18秒前
夏小舟发布了新的文献求助10
19秒前
积极纲发布了新的文献求助10
19秒前
21秒前
晒太阳比赛冠军完成签到 ,获得积分10
21秒前
一一应助Liekkas采纳,获得200
21秒前
liuyi666发布了新的文献求助10
23秒前
24秒前
然来溪完成签到 ,获得积分10
24秒前
zyy0811完成签到,获得积分10
25秒前
26秒前
28秒前
28秒前
31秒前
31秒前
灵巧夏彤完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407027
求助须知:如何正确求助?哪些是违规求助? 4524685
关于积分的说明 14099897
捐赠科研通 4438552
什么是DOI,文献DOI怎么找? 2436342
邀请新用户注册赠送积分活动 1428326
关于科研通互助平台的介绍 1406406