Predicting microbial responses to changes in soil physical and chemical properties under different land management

Pedotransfer函数 环境科学 堆积密度 微生物 土壤有机质 土壤科学 耕作 土工试验 微生物种群生物学 农学 土壤水分 导水率 生物 细菌 遗传学
作者
Sara Sadeghi,Billi Jean Petermann,Joshua J. Steffan,Eric C. Brevik,Csongor Gedeon
出处
期刊:Applied Soil Ecology [Elsevier BV]
卷期号:188: 104878-104878 被引量:17
标识
DOI:10.1016/j.apsoil.2023.104878
摘要

Microbial abundance and community structure can be altered directly and indirectly by soil physical and chemical characteristics which, in turn, can be influenced by land use management. This study utilized the cubist model to predict soil microbial communities based on soil properties at different depths and under different agricultural management in Dawson County, Montana, USA. A total of 538 soil samples were collected from three management treatments (control, no-tillage (NT), and no-tillage with livestock grazing in winter (NTLS)) from three depths (0–5, 5–15, and 15–30 cm). Soil physical and chemical properties and total phospholipid fatty acid (PLFA) analysis were used to predict soil biological properties. Root mean square error (RMSE), mean absolute error (MAE), relative error (RE), mean bias error (MBE), and R squared (R2) were used to assess the performance of predictions. Results showed that the strongest correlation was between the total PLFA and soil microorganisms. Different soil chemical and physical properties were useful to predict soil microbial communities; ammonium-N, phosphorus, potassium, electrical conductivity, pH, organic matter, bulk density, sand, and clay significantly correlated with most soil microorganisms. Results indicated that the cubist algorithm produced promising results to predict most soil microorganism responses to various treatments and depths. However, this model did not perform well when attempting to predict the ratio of bacteria to fungi. The most important variable to predict all soil microorganisms was the total PLFA, with >90 % effectiveness. These results imply that applying pedotransfer functions (PTFs) to predict soil microbial communities in areas with limited soil data and monetary resources shows promise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
woollen2022发布了新的文献求助10
1秒前
1秒前
卡卡可可完成签到,获得积分10
1秒前
1秒前
暖暖完成签到,获得积分10
1秒前
linlin完成签到,获得积分10
2秒前
zhxs发布了新的文献求助10
2秒前
ABC发布了新的文献求助10
3秒前
甜蜜阑悦发布了新的文献求助10
3秒前
3秒前
万能图书馆应助源源元采纳,获得10
3秒前
MchemG应助小海豹采纳,获得10
4秒前
研友_LMo56Z发布了新的文献求助10
4秒前
Jasper应助嘻嘻采纳,获得10
5秒前
小马甲应助xxxx采纳,获得10
5秒前
zz完成签到,获得积分20
5秒前
6秒前
7秒前
lmc完成签到,获得积分10
7秒前
7秒前
lin完成签到,获得积分10
7秒前
7秒前
小蘑菇应助zhangpeng采纳,获得10
8秒前
elerain完成签到,获得积分10
9秒前
陶招发布了新的文献求助10
10秒前
FashionBoy应助甜蜜阑悦采纳,获得10
10秒前
FashionBoy应助自觉南风采纳,获得10
10秒前
11秒前
11秒前
Rondab应助PG采纳,获得10
11秒前
11秒前
nuannuan发布了新的文献求助10
12秒前
大神装发布了新的文献求助10
12秒前
白菜发布了新的文献求助10
12秒前
13秒前
13秒前
wangjue完成签到,获得积分10
14秒前
ABC完成签到,获得积分10
14秒前
Chaimengdi发布了新的文献求助10
14秒前
Anovel完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954916
求助须知:如何正确求助?哪些是违规求助? 3501031
关于积分的说明 11101644
捐赠科研通 3231451
什么是DOI,文献DOI怎么找? 1786425
邀请新用户注册赠送积分活动 870050
科研通“疑难数据库(出版商)”最低求助积分说明 801785