Predicting microbial responses to changes in soil physical and chemical properties under different land management

Pedotransfer函数 环境科学 堆积密度 微生物 土壤有机质 土壤科学 耕作 土工试验 微生物种群生物学 农学 土壤水分 导水率 生物 细菌 遗传学
作者
Sara Sadeghi,Billi Jean Petermann,Joshua J. Steffan,Eric C. Brevik,Csongor Gedeon
出处
期刊:Applied Soil Ecology [Elsevier BV]
卷期号:188: 104878-104878 被引量:17
标识
DOI:10.1016/j.apsoil.2023.104878
摘要

Microbial abundance and community structure can be altered directly and indirectly by soil physical and chemical characteristics which, in turn, can be influenced by land use management. This study utilized the cubist model to predict soil microbial communities based on soil properties at different depths and under different agricultural management in Dawson County, Montana, USA. A total of 538 soil samples were collected from three management treatments (control, no-tillage (NT), and no-tillage with livestock grazing in winter (NTLS)) from three depths (0–5, 5–15, and 15–30 cm). Soil physical and chemical properties and total phospholipid fatty acid (PLFA) analysis were used to predict soil biological properties. Root mean square error (RMSE), mean absolute error (MAE), relative error (RE), mean bias error (MBE), and R squared (R2) were used to assess the performance of predictions. Results showed that the strongest correlation was between the total PLFA and soil microorganisms. Different soil chemical and physical properties were useful to predict soil microbial communities; ammonium-N, phosphorus, potassium, electrical conductivity, pH, organic matter, bulk density, sand, and clay significantly correlated with most soil microorganisms. Results indicated that the cubist algorithm produced promising results to predict most soil microorganism responses to various treatments and depths. However, this model did not perform well when attempting to predict the ratio of bacteria to fungi. The most important variable to predict all soil microorganisms was the total PLFA, with >90 % effectiveness. These results imply that applying pedotransfer functions (PTFs) to predict soil microbial communities in areas with limited soil data and monetary resources shows promise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
生信精准科研完成签到,获得积分10
2秒前
小海哥完成签到,获得积分10
3秒前
ch发布了新的文献求助10
4秒前
5秒前
5秒前
瓜农完成签到 ,获得积分10
5秒前
王欢发布了新的文献求助10
6秒前
香蕉觅云应助星期一采纳,获得10
7秒前
酷波er应助迷路的手机采纳,获得10
8秒前
呐呐完成签到,获得积分10
8秒前
HEIKU应助janice采纳,获得10
10秒前
10秒前
月亮与六便士完成签到,获得积分10
10秒前
hihi完成签到,获得积分10
11秒前
蓝胖胖蓝完成签到,获得积分10
12秒前
12秒前
zzzzzzzzzzzz完成签到,获得积分10
12秒前
maomao发布了新的文献求助10
13秒前
熊二完成签到 ,获得积分10
14秒前
cdercder应助资白玉采纳,获得10
16秒前
曹文鹏完成签到 ,获得积分10
17秒前
悲伤西米露应助xue采纳,获得10
17秒前
19秒前
19秒前
24秒前
包寄容完成签到,获得积分10
25秒前
个木发布了新的文献求助10
25秒前
27秒前
热心又蓝完成签到,获得积分10
28秒前
NexusExplorer应助啦啦啦采纳,获得10
31秒前
顾翩翩完成签到,获得积分10
32秒前
曹官子完成签到 ,获得积分10
34秒前
思源应助逝月采纳,获得10
34秒前
kaikai发布了新的文献求助10
35秒前
潇洒的问夏完成签到,获得积分10
39秒前
yyyyy发布了新的文献求助10
40秒前
42秒前
芯止谭轩完成签到,获得积分10
42秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737385
求助须知:如何正确求助?哪些是违规求助? 3281209
关于积分的说明 10023728
捐赠科研通 2997939
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782304
科研通“疑难数据库(出版商)”最低求助积分说明 749762