已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using Machine Learning to Reduce the Need for Contrast Agents in Breast MRI through Synthetic Images

医学 对比度(视觉) 乳房磁振造影 人工智能 乳房成像 放射科 核医学 乳腺摄影术 计算机科学 乳腺癌 癌症 内科学
作者
Gustav Müller‐Franzes,Luisa Huck,Soroosh Tayebi Arasteh,Firas Khader,Tianyu Han,Volkmar Schulz,Ebba Dethlefsen,Jakob Nikolas Kather,Sven Nebelung,Teresa Nolte,Christiane Kühl,Daniel Truhn
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (3) 被引量:31
标识
DOI:10.1148/radiol.222211
摘要

Background Reducing the amount of contrast agent needed for contrast-enhanced breast MRI is desirable. Purpose To investigate if generative adversarial networks (GANs) can recover contrast-enhanced breast MRI scans from unenhanced images and virtual low-contrast-enhanced images. Materials and Methods In this retrospective study of breast MRI performed from January 2010 to December 2019, simulated low-contrast images were produced by adding virtual noise to the existing contrast-enhanced images. GANs were then trained to recover the contrast-enhanced images from the simulated low-contrast images (approach A) or from the unenhanced T1- and T2-weighted images (approach B). Two experienced radiologists were tasked with distinguishing between real and synthesized contrast-enhanced images using both approaches. Image appearance and conspicuity of enhancing lesions on the real versus synthesized contrast-enhanced images were independently compared and rated on a five-point Likert scale. P values were calculated by using bootstrapping. Results A total of 9751 breast MRI examinations from 5086 patients (mean age, 56 years ± 10 [SD]) were included. Readers who were blinded to the nature of the images could not distinguish real from synthetic contrast-enhanced images (average accuracy of differentiation: approach A, 52 of 100; approach B, 61 of 100). The test set included images with and without enhancing lesions (29 enhancing masses and 21 nonmass enhancement; 50 total). When readers who were not blinded compared the appearance of the real versus synthetic contrast-enhanced images side by side, approach A image ratings were significantly higher than those of approach B (mean rating, 4.6 ± 0.1 vs 3.0 ± 0.2; P < .001), with the noninferiority margin met by synthetic images from approach A (P < .001) but not B (P > .99). Conclusion Generative adversarial networks may be useful to enable breast MRI with reduced contrast agent dose. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Bahl in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贺飞风发布了新的文献求助10
2秒前
6秒前
7秒前
子阅完成签到 ,获得积分10
8秒前
我是老大应助小小鱼采纳,获得10
9秒前
9秒前
Quinn完成签到 ,获得积分10
10秒前
chen完成签到,获得积分10
10秒前
12秒前
13秒前
wjq2430发布了新的文献求助10
13秒前
秦玉岩发布了新的文献求助10
13秒前
14秒前
无花果应助潘丝洞采纳,获得10
15秒前
Singularity应助bukeshuo采纳,获得10
15秒前
Chenhao_Wang完成签到 ,获得积分10
19秒前
欢呼忆丹发布了新的文献求助10
20秒前
高兴绿柳完成签到 ,获得积分10
22秒前
Chenhao_Wang关注了科研通微信公众号
25秒前
充电宝应助细心秀发采纳,获得10
26秒前
优雅的善若完成签到,获得积分10
28秒前
ljy阿完成签到 ,获得积分10
29秒前
天天快乐应助lu采纳,获得10
30秒前
Gin发布了新的文献求助10
33秒前
ll发布了新的文献求助10
33秒前
烟花应助白蓝采纳,获得10
35秒前
37秒前
41秒前
44秒前
行路难完成签到 ,获得积分10
48秒前
48秒前
言屿发布了新的文献求助10
48秒前
51秒前
51秒前
felix发布了新的文献求助10
52秒前
圆圆完成签到,获得积分10
52秒前
53秒前
情怀应助ptyz霍建华采纳,获得10
54秒前
美好的鸽子完成签到,获得积分10
54秒前
香雪若梅发布了新的文献求助10
56秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142425
求助须知:如何正确求助?哪些是违规求助? 2793350
关于积分的说明 7806409
捐赠科研通 2449622
什么是DOI,文献DOI怎么找? 1303363
科研通“疑难数据库(出版商)”最低求助积分说明 626850
版权声明 601309