Using Machine Learning to Reduce the Need for Contrast Agents in Breast MRI through Synthetic Images

医学 对比度(视觉) 乳房磁振造影 人工智能 乳房成像 放射科 核医学 乳腺摄影术 计算机科学 乳腺癌 癌症 内科学
作者
Gustav Müller‐Franzes,Luisa Huck,Soroosh Tayebi Arasteh,Firas Khader,Tianyu Han,Volkmar Schulz,Ebba Dethlefsen,Jakob Nikolas Kather,Sven Nebelung,Teresa Nolte,Christiane Kühl,Daniel Truhn
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (3) 被引量:41
标识
DOI:10.1148/radiol.222211
摘要

Background Reducing the amount of contrast agent needed for contrast-enhanced breast MRI is desirable. Purpose To investigate if generative adversarial networks (GANs) can recover contrast-enhanced breast MRI scans from unenhanced images and virtual low-contrast-enhanced images. Materials and Methods In this retrospective study of breast MRI performed from January 2010 to December 2019, simulated low-contrast images were produced by adding virtual noise to the existing contrast-enhanced images. GANs were then trained to recover the contrast-enhanced images from the simulated low-contrast images (approach A) or from the unenhanced T1- and T2-weighted images (approach B). Two experienced radiologists were tasked with distinguishing between real and synthesized contrast-enhanced images using both approaches. Image appearance and conspicuity of enhancing lesions on the real versus synthesized contrast-enhanced images were independently compared and rated on a five-point Likert scale. P values were calculated by using bootstrapping. Results A total of 9751 breast MRI examinations from 5086 patients (mean age, 56 years ± 10 [SD]) were included. Readers who were blinded to the nature of the images could not distinguish real from synthetic contrast-enhanced images (average accuracy of differentiation: approach A, 52 of 100; approach B, 61 of 100). The test set included images with and without enhancing lesions (29 enhancing masses and 21 nonmass enhancement; 50 total). When readers who were not blinded compared the appearance of the real versus synthetic contrast-enhanced images side by side, approach A image ratings were significantly higher than those of approach B (mean rating, 4.6 ± 0.1 vs 3.0 ± 0.2; P < .001), with the noninferiority margin met by synthetic images from approach A (P < .001) but not B (P > .99). Conclusion Generative adversarial networks may be useful to enable breast MRI with reduced contrast agent dose. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Bahl in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩1234发布了新的文献求助10
1秒前
2秒前
点点点点发布了新的文献求助10
2秒前
2秒前
zmnzmnzmn发布了新的文献求助10
2秒前
桑叶完成签到,获得积分10
4秒前
李爱国应助檸123456采纳,获得10
4秒前
科目三应助韩1234采纳,获得10
7秒前
深情安青应助明理冰淇淋采纳,获得10
7秒前
隐形曼青应助阿仔采纳,获得10
7秒前
8秒前
科研通AI6应助Qin采纳,获得10
8秒前
Sand完成签到,获得积分10
9秒前
怕黑的凡灵完成签到,获得积分10
9秒前
大道无痕发布了新的文献求助10
9秒前
科研人完成签到,获得积分10
9秒前
10秒前
10秒前
我是老大应助YC采纳,获得10
11秒前
量子星尘发布了新的文献求助20
11秒前
12秒前
ceeray23应助865695423@qq.com采纳,获得10
12秒前
hua发布了新的文献求助10
12秒前
Sand发布了新的文献求助20
12秒前
minting完成签到,获得积分10
13秒前
大个应助自然冥茗采纳,获得10
13秒前
15秒前
LUNE完成签到 ,获得积分10
19秒前
Dr_WongRunFong完成签到,获得积分10
19秒前
20秒前
smileam完成签到 ,获得积分10
20秒前
Zx_1993应助秋子david采纳,获得10
22秒前
24秒前
navy发布了新的文献求助10
24秒前
Cc发布了新的文献求助10
24秒前
天天发布了新的文献求助10
24秒前
邱夫斯基完成签到 ,获得积分10
26秒前
27秒前
zsx发布了新的文献求助10
28秒前
李爱国应助巧巧巧乐兹采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898874
求助须知:如何正确求助?哪些是违规求助? 4179426
关于积分的说明 12974964
捐赠科研通 3943420
什么是DOI,文献DOI怎么找? 2163330
邀请新用户注册赠送积分活动 1181673
关于科研通互助平台的介绍 1087325