Using Machine Learning to Reduce the Need for Contrast Agents in Breast MRI through Synthetic Images

医学 对比度(视觉) 乳房磁振造影 人工智能 乳房成像 放射科 核医学 乳腺摄影术 计算机科学 乳腺癌 癌症 内科学
作者
Gustav Müller‐Franzes,Luisa Huck,Soroosh Tayebi Arasteh,Firas Khader,Tianyu Han,Volkmar Schulz,Ebba Dethlefsen,Jakob Nikolas Kather,Sven Nebelung,Teresa Nolte,Christiane Kühl,Daniel Truhn
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (3) 被引量:41
标识
DOI:10.1148/radiol.222211
摘要

Background Reducing the amount of contrast agent needed for contrast-enhanced breast MRI is desirable. Purpose To investigate if generative adversarial networks (GANs) can recover contrast-enhanced breast MRI scans from unenhanced images and virtual low-contrast-enhanced images. Materials and Methods In this retrospective study of breast MRI performed from January 2010 to December 2019, simulated low-contrast images were produced by adding virtual noise to the existing contrast-enhanced images. GANs were then trained to recover the contrast-enhanced images from the simulated low-contrast images (approach A) or from the unenhanced T1- and T2-weighted images (approach B). Two experienced radiologists were tasked with distinguishing between real and synthesized contrast-enhanced images using both approaches. Image appearance and conspicuity of enhancing lesions on the real versus synthesized contrast-enhanced images were independently compared and rated on a five-point Likert scale. P values were calculated by using bootstrapping. Results A total of 9751 breast MRI examinations from 5086 patients (mean age, 56 years ± 10 [SD]) were included. Readers who were blinded to the nature of the images could not distinguish real from synthetic contrast-enhanced images (average accuracy of differentiation: approach A, 52 of 100; approach B, 61 of 100). The test set included images with and without enhancing lesions (29 enhancing masses and 21 nonmass enhancement; 50 total). When readers who were not blinded compared the appearance of the real versus synthetic contrast-enhanced images side by side, approach A image ratings were significantly higher than those of approach B (mean rating, 4.6 ± 0.1 vs 3.0 ± 0.2; P < .001), with the noninferiority margin met by synthetic images from approach A (P < .001) but not B (P > .99). Conclusion Generative adversarial networks may be useful to enable breast MRI with reduced contrast agent dose. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Bahl in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助hkh采纳,获得10
1秒前
大龙哥886应助hkh采纳,获得10
1秒前
大龙哥886应助hkh采纳,获得10
1秒前
wjf发布了新的文献求助10
1秒前
科研通AI2S应助hkh采纳,获得10
1秒前
科研通AI2S应助hkh采纳,获得10
1秒前
祝我好运完成签到,获得积分10
2秒前
韦广阔发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
奥利奥完成签到 ,获得积分10
4秒前
惊天大幂幂完成签到,获得积分10
5秒前
6秒前
负责的采文完成签到,获得积分20
7秒前
博博完成签到,获得积分10
7秒前
小张医生完成签到,获得积分10
9秒前
善学以致用应助佳佳528采纳,获得10
10秒前
闪闪星星完成签到,获得积分10
13秒前
Pan完成签到,获得积分20
14秒前
面壁的章北海完成签到,获得积分10
15秒前
琰sky完成签到 ,获得积分10
17秒前
汪宇发布了新的文献求助10
18秒前
酷炫的雪珊完成签到 ,获得积分10
19秒前
20秒前
灿灿发布了新的文献求助10
21秒前
南亭完成签到,获得积分0
21秒前
江添盛望完成签到,获得积分10
21秒前
21秒前
23秒前
su完成签到,获得积分10
23秒前
乐乐应助zsir采纳,获得10
23秒前
852应助牛仔采纳,获得10
24秒前
25秒前
杨小鸿发布了新的文献求助10
25秒前
27秒前
28秒前
Vexolve完成签到 ,获得积分10
28秒前
AKKK完成签到 ,获得积分10
30秒前
科研猫完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
Haonan完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742102
求助须知:如何正确求助?哪些是违规求助? 5405928
关于积分的说明 15343995
捐赠科研通 4883565
什么是DOI,文献DOI怎么找? 2625098
邀请新用户注册赠送积分活动 1573960
关于科研通互助平台的介绍 1530910