亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using Machine Learning to Reduce the Need for Contrast Agents in Breast MRI through Synthetic Images

医学 对比度(视觉) 乳房磁振造影 人工智能 乳房成像 放射科 核医学 乳腺摄影术 计算机科学 乳腺癌 癌症 内科学
作者
Gustav Müller‐Franzes,Luisa Huck,Soroosh Tayebi Arasteh,Firas Khader,Tianyu Han,Volkmar Schulz,Ebba Dethlefsen,Jakob Nikolas Kather,Sven Nebelung,Teresa Nolte,Christiane Kühl,Daniel Truhn
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (3) 被引量:41
标识
DOI:10.1148/radiol.222211
摘要

Background Reducing the amount of contrast agent needed for contrast-enhanced breast MRI is desirable. Purpose To investigate if generative adversarial networks (GANs) can recover contrast-enhanced breast MRI scans from unenhanced images and virtual low-contrast-enhanced images. Materials and Methods In this retrospective study of breast MRI performed from January 2010 to December 2019, simulated low-contrast images were produced by adding virtual noise to the existing contrast-enhanced images. GANs were then trained to recover the contrast-enhanced images from the simulated low-contrast images (approach A) or from the unenhanced T1- and T2-weighted images (approach B). Two experienced radiologists were tasked with distinguishing between real and synthesized contrast-enhanced images using both approaches. Image appearance and conspicuity of enhancing lesions on the real versus synthesized contrast-enhanced images were independently compared and rated on a five-point Likert scale. P values were calculated by using bootstrapping. Results A total of 9751 breast MRI examinations from 5086 patients (mean age, 56 years ± 10 [SD]) were included. Readers who were blinded to the nature of the images could not distinguish real from synthetic contrast-enhanced images (average accuracy of differentiation: approach A, 52 of 100; approach B, 61 of 100). The test set included images with and without enhancing lesions (29 enhancing masses and 21 nonmass enhancement; 50 total). When readers who were not blinded compared the appearance of the real versus synthetic contrast-enhanced images side by side, approach A image ratings were significantly higher than those of approach B (mean rating, 4.6 ± 0.1 vs 3.0 ± 0.2; P < .001), with the noninferiority margin met by synthetic images from approach A (P < .001) but not B (P > .99). Conclusion Generative adversarial networks may be useful to enable breast MRI with reduced contrast agent dose. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Bahl in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
褚青筠发布了新的文献求助10
3秒前
多情道之完成签到 ,获得积分10
3秒前
芽芽完成签到 ,获得积分10
7秒前
梁馨月完成签到,获得积分10
7秒前
成就若颜完成签到,获得积分10
11秒前
褚青筠完成签到,获得积分10
11秒前
grace完成签到 ,获得积分10
13秒前
Ava应助adearfish采纳,获得10
14秒前
15秒前
今后应助拜拜了您嘞采纳,获得10
20秒前
ZMR121121发布了新的文献求助10
20秒前
江南达尔贝完成签到 ,获得积分10
22秒前
zhx发布了新的文献求助10
24秒前
26秒前
27秒前
corleeang完成签到 ,获得积分10
29秒前
闲鱼耶鹤完成签到 ,获得积分10
30秒前
科研通AI6应助ZMR121121采纳,获得10
31秒前
积极老四发布了新的文献求助10
31秒前
32秒前
烂漫以冬发布了新的文献求助10
32秒前
chiien完成签到 ,获得积分10
32秒前
开霁完成签到 ,获得积分10
36秒前
Tracy发布了新的文献求助10
38秒前
Ciel完成签到 ,获得积分10
42秒前
美味的屑狐狸完成签到 ,获得积分10
46秒前
骊晨完成签到 ,获得积分10
47秒前
哈基米发布了新的文献求助10
48秒前
klyang应助能干的人采纳,获得30
49秒前
Lucas应助积极老四采纳,获得10
49秒前
耐斯糖完成签到 ,获得积分10
51秒前
bkagyin应助文静的成败采纳,获得50
55秒前
三岁完成签到 ,获得积分10
58秒前
江流有声完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
医疗废物专用车乘客完成签到,获得积分10
1分钟前
鼠鼠完成签到 ,获得积分10
1分钟前
qiujunchu发布了新的文献求助20
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220393
求助须知:如何正确求助?哪些是违规求助? 4393875
关于积分的说明 13679833
捐赠科研通 4256696
什么是DOI,文献DOI怎么找? 2335790
邀请新用户注册赠送积分活动 1333353
关于科研通互助平台的介绍 1287656