Using Machine Learning to Reduce the Need for Contrast Agents in Breast MRI through Synthetic Images

医学 对比度(视觉) 乳房磁振造影 人工智能 乳房成像 放射科 核医学 乳腺摄影术 计算机科学 乳腺癌 癌症 内科学
作者
Gustav Müller‐Franzes,Luisa Huck,Soroosh Tayebi Arasteh,Firas Khader,Tianyu Han,Volkmar Schulz,Ebba Dethlefsen,Jakob Nikolas Kather,Sven Nebelung,Teresa Nolte,Christiane Kühl,Daniel Truhn
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (3) 被引量:41
标识
DOI:10.1148/radiol.222211
摘要

Background Reducing the amount of contrast agent needed for contrast-enhanced breast MRI is desirable. Purpose To investigate if generative adversarial networks (GANs) can recover contrast-enhanced breast MRI scans from unenhanced images and virtual low-contrast-enhanced images. Materials and Methods In this retrospective study of breast MRI performed from January 2010 to December 2019, simulated low-contrast images were produced by adding virtual noise to the existing contrast-enhanced images. GANs were then trained to recover the contrast-enhanced images from the simulated low-contrast images (approach A) or from the unenhanced T1- and T2-weighted images (approach B). Two experienced radiologists were tasked with distinguishing between real and synthesized contrast-enhanced images using both approaches. Image appearance and conspicuity of enhancing lesions on the real versus synthesized contrast-enhanced images were independently compared and rated on a five-point Likert scale. P values were calculated by using bootstrapping. Results A total of 9751 breast MRI examinations from 5086 patients (mean age, 56 years ± 10 [SD]) were included. Readers who were blinded to the nature of the images could not distinguish real from synthetic contrast-enhanced images (average accuracy of differentiation: approach A, 52 of 100; approach B, 61 of 100). The test set included images with and without enhancing lesions (29 enhancing masses and 21 nonmass enhancement; 50 total). When readers who were not blinded compared the appearance of the real versus synthetic contrast-enhanced images side by side, approach A image ratings were significantly higher than those of approach B (mean rating, 4.6 ± 0.1 vs 3.0 ± 0.2; P < .001), with the noninferiority margin met by synthetic images from approach A (P < .001) but not B (P > .99). Conclusion Generative adversarial networks may be useful to enable breast MRI with reduced contrast agent dose. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Bahl in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻无春完成签到 ,获得积分10
刚刚
liu完成签到,获得积分10
刚刚
一点完成签到,获得积分10
刚刚
zhangxin完成签到,获得积分10
1秒前
我是老大应助Little采纳,获得10
1秒前
1秒前
端庄幻桃完成签到 ,获得积分10
1秒前
温暖的书白完成签到,获得积分10
1秒前
小录完成签到,获得积分10
2秒前
2秒前
微纳组刘同完成签到,获得积分10
2秒前
3秒前
zzh完成签到 ,获得积分10
3秒前
Bigbiglei完成签到,获得积分10
3秒前
3秒前
4秒前
李静发布了新的文献求助20
4秒前
拼搏菲鹰完成签到,获得积分10
4秒前
Zhang完成签到,获得积分10
4秒前
silvia-z完成签到,获得积分10
4秒前
Mr.R完成签到,获得积分10
5秒前
5秒前
zoey完成签到,获得积分10
5秒前
黄心悦完成签到,获得积分10
6秒前
7秒前
李帅完成签到,获得积分10
7秒前
英姑应助从容问雁采纳,获得10
7秒前
FashionBoy应助小录采纳,获得10
7秒前
科研通AI6应助Cheryl采纳,获得10
7秒前
Akim应助Cheryl采纳,获得10
7秒前
WangQ完成签到,获得积分10
8秒前
dogsday完成签到,获得积分10
8秒前
1278day完成签到,获得积分10
8秒前
8秒前
8秒前
顾矜应助东莱野老采纳,获得10
8秒前
SCINEXUS应助菠菜采纳,获得60
8秒前
量子星尘发布了新的文献求助10
8秒前
今夕何夕完成签到,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510277
求助须知:如何正确求助?哪些是违规求助? 4604975
关于积分的说明 14491476
捐赠科研通 4540079
什么是DOI,文献DOI怎么找? 2487833
邀请新用户注册赠送积分活动 1470038
关于科研通互助平台的介绍 1442547