Using Machine Learning to Reduce the Need for Contrast Agents in Breast MRI through Synthetic Images

医学 对比度(视觉) 乳房磁振造影 人工智能 乳房成像 放射科 核医学 乳腺摄影术 计算机科学 乳腺癌 癌症 内科学
作者
Gustav Müller‐Franzes,Luisa Huck,Soroosh Tayebi Arasteh,Firas Khader,Tianyu Han,Volkmar Schulz,Ebba Dethlefsen,Jakob Nikolas Kather,Sven Nebelung,Teresa Nolte,Christiane Kühl,Daniel Truhn
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (3) 被引量:41
标识
DOI:10.1148/radiol.222211
摘要

Background Reducing the amount of contrast agent needed for contrast-enhanced breast MRI is desirable. Purpose To investigate if generative adversarial networks (GANs) can recover contrast-enhanced breast MRI scans from unenhanced images and virtual low-contrast-enhanced images. Materials and Methods In this retrospective study of breast MRI performed from January 2010 to December 2019, simulated low-contrast images were produced by adding virtual noise to the existing contrast-enhanced images. GANs were then trained to recover the contrast-enhanced images from the simulated low-contrast images (approach A) or from the unenhanced T1- and T2-weighted images (approach B). Two experienced radiologists were tasked with distinguishing between real and synthesized contrast-enhanced images using both approaches. Image appearance and conspicuity of enhancing lesions on the real versus synthesized contrast-enhanced images were independently compared and rated on a five-point Likert scale. P values were calculated by using bootstrapping. Results A total of 9751 breast MRI examinations from 5086 patients (mean age, 56 years ± 10 [SD]) were included. Readers who were blinded to the nature of the images could not distinguish real from synthetic contrast-enhanced images (average accuracy of differentiation: approach A, 52 of 100; approach B, 61 of 100). The test set included images with and without enhancing lesions (29 enhancing masses and 21 nonmass enhancement; 50 total). When readers who were not blinded compared the appearance of the real versus synthetic contrast-enhanced images side by side, approach A image ratings were significantly higher than those of approach B (mean rating, 4.6 ± 0.1 vs 3.0 ± 0.2; P < .001), with the noninferiority margin met by synthetic images from approach A (P < .001) but not B (P > .99). Conclusion Generative adversarial networks may be useful to enable breast MRI with reduced contrast agent dose. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Bahl in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
le完成签到,获得积分10
1秒前
晚心发布了新的文献求助10
1秒前
唐礼祥完成签到,获得积分10
1秒前
1秒前
任笑白完成签到 ,获得积分10
1秒前
chen发布了新的文献求助10
1秒前
2秒前
hymmm完成签到,获得积分10
2秒前
Looker发布了新的文献求助20
2秒前
Ray完成签到 ,获得积分10
3秒前
4秒前
xs完成签到,获得积分10
4秒前
le发布了新的文献求助10
5秒前
科研通AI6应助温柔嚣张采纳,获得10
5秒前
5秒前
JMH完成签到,获得积分10
6秒前
HonneursW发布了新的文献求助10
6秒前
巧克力发布了新的文献求助10
6秒前
6秒前
7秒前
just_cook完成签到,获得积分10
8秒前
古鲁蒂发布了新的文献求助10
8秒前
luo完成签到,获得积分10
8秒前
ww完成签到,获得积分10
8秒前
chd完成签到,获得积分20
8秒前
还单身的觅露完成签到,获得积分20
10秒前
追寻的冬萱完成签到 ,获得积分10
10秒前
璐璐完成签到 ,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
xiren发布了新的文献求助30
13秒前
清河聂氏完成签到,获得积分10
14秒前
CipherSage应助刘述采纳,获得10
14秒前
16秒前
16秒前
Jerry发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666454
求助须知:如何正确求助?哪些是违规求助? 4882107
关于积分的说明 15117498
捐赠科研通 4825502
什么是DOI,文献DOI怎么找? 2583441
邀请新用户注册赠送积分活动 1537599
关于科研通互助平台的介绍 1495756