Caffeic acid loaded into engineered lipid nanoparticles for Alzheimer's disease therapy

脂质体 药物输送 化学 体内 生物利用度 血脑屏障 生物物理学 药理学 咖啡酸 药品 生物化学 抗氧化剂 材料科学 纳米技术 医学 生物 生物技术 内分泌学 中枢神经系统
作者
Stéphanie Andrade,Maria do Carmo Pereira,Joana A. Loureiro
出处
期刊:Colloids and Surfaces B: Biointerfaces [Elsevier]
卷期号:225: 113270-113270 被引量:4
标识
DOI:10.1016/j.colsurfb.2023.113270
摘要

Alzheimer's disease (AD) is an incurable neurological illness and the leading cause of dementia, characterized by amyloid β (Aβ) fibril deposits. Caffeic acid (CA) has demonstrated potential value for AD therapy due to its anti-amyloidogenic, anti-inflammatory, and antioxidant properties. However, its chemical instability and limited bioavailability limit its therapeutic potential in vivo. Herein, liposomes loading CA were produced by distinct techniques. Taking advantage of the overexpression of transferrin (Tf) receptors in brain endothelial cells, Tf was conjugated to the liposomes' surface to direct the CA-loaded nanoparticles (NPs) to the blood-brain barrier (BBB). The optimized Tf-modified NPs exhibited a mean size of around 140 nm, a polydispersity index lower than 0.2, and a neutral surface charge, being appropriate for drug delivery. The Tf-functionalized liposomes showed suitable encapsulation efficiency and physical stability for at least 2 months. Furthermore, in simulated physiological settings, the NPs ensured the sustained release of CA for 8 days. The anti-amyloidogenic efficacy of the optimized drug delivery system (DDS) was investigated. The data show that CA-loaded Tf-functionalized liposomes are capable of preventing Aβ aggregation and fibril formation, and disaggregating mature fibrils. Hence, the proposed brain-targeted DDS may be a potential strategy for preventing and treating AD. Future studies in animal models of AD will be valuable to validate the therapeutic efficacy of the optimized nanosystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
StuXuhao完成签到,获得积分10
刚刚
酷波er应助小木棉采纳,获得10
1秒前
2秒前
3秒前
科研通AI2S应助xinchi采纳,获得10
5秒前
5秒前
orange9发布了新的文献求助10
7秒前
7秒前
Xuemin发布了新的文献求助10
9秒前
Hello应助gejingshu采纳,获得10
10秒前
迪迦发布了新的文献求助30
10秒前
13秒前
13秒前
17秒前
合适的平安完成签到,获得积分10
19秒前
ket发布了新的文献求助10
19秒前
19秒前
港岛妹妹给港岛妹妹的求助进行了留言
20秒前
李健应助追梦采纳,获得10
20秒前
gejingshu完成签到,获得积分10
21秒前
hnl应助曾经小伙采纳,获得60
21秒前
酷波er应助曾经小伙采纳,获得10
21秒前
酷波er应助intangible采纳,获得10
21秒前
21秒前
22秒前
drsunofoph123发布了新的文献求助10
23秒前
Xuemin完成签到,获得积分10
23秒前
斯文败类应助刻苦问凝采纳,获得10
24秒前
gejingshu发布了新的文献求助10
24秒前
安静的绮琴完成签到,获得积分10
26秒前
26秒前
27秒前
27秒前
情怀应助天亮了采纳,获得10
28秒前
winifred完成签到 ,获得积分10
29秒前
Owen应助安静的绮琴采纳,获得10
30秒前
31秒前
海梓发布了新的文献求助10
31秒前
可爱的函函应助111采纳,获得10
32秒前
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458976
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037422
捐赠科研通 2742859
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589